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Intro 1

What is an Operating System?

e Three views of an operating system
Application View: what services does it provide?
System View: what problems does it solve?

Implementation View: how is it built?

An operating system is part cop, part facilitator.
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Intro 2

Application View of an Operating System

e The OS provides an execution environment for running programs.

— The execution environment provides a program with the processor time
and memory space that it needs to run.

— The execution environment provides interfaces through which a program
can use networks, storage, 1/0O devices, and other system hardware
components.

« Interfaces provide a simplified, abstract view of hardware to application
programs.

— The execution environment isolates running programs from one another
and prevents undesirable interactions among them.

CS350 Operating Systems Winter 2012




Intro

Other Views of an Operating System

System View: The OS manages the hardware resources of a computer system.

e Resources include processors, memory, disks and other storage devices,
network interfaces, 1/0 devices such as keyboards, mice and monitors, an

SO on.

e The operating system allocates resources among running programs. It
controls the sharing of resources among programs.

e The OS itself also uses resources, which it must share with application
programs.
Implementation View: The OS is a concurrent, real-time program.

e Concurrency arises naturally in an OS when it supports concurrent
applications, and because it must interact directly with the hardware.

e Hardware interactions also impose timing constraints.
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Intro

The Operating System and the Kernel

e Some terminology:

kernel: The operating system kernel is the part of the operating system that
responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and
may include other related programs that provide services for applications.
This may include things like:
— utility programs
— command interpreters
— programming libraries

CS350 Operating Systems Winter 2012




Intro 5

Schematic View of an Operating System
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Intro 6

Operating System Abstractions

e The execution environment provided by the OS includes a variety of abstract
entities that can be manipulated by a running program. Examples:

files and file systems:abstract view of secondary storage
address spacesabstract view of primary memory
processes, threadsabstract view of program execution

sockets, pipes:abstract view of network or other message channels

e This course will cover
— why these abstractions are designed the way they are
— how these abstractions are manipulated by application programs

— how these abstractions are implemented by the OS
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Intro

Course Outline

Introduction

Threads and Concurrency
Synchronization

Processes and the Kernel

Virtual Memory

Scheduling

Devices and Device Management
File Systems

Interprocess Communication and Networking (time permitting)
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Threads and Concurrency

e Registers

Review: Program Execution

— program counter, stack pointer,.

e Memory

— program code

— program data

— program stack containing procedure activation records

¢ CPU

— fetches and executes instructions
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Threads and Concurrency 2
Review: MIPS Register Usage

See al so: kern/arch/ m ps/include/asndefs. h

RO, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assenbl er

R2, vO = ## return value / system call nunber

R3, vl = ## return val ue

R4, a0l = ## 1st argunent (to subroutine)

R5, al = ## 2nd ar gunent

R6, a2 = ## 3rd argunent

R7, a3 = ## 4th argunent
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Threads and Concurrency

Review: MIPS Register Usage

RO8-R15, tO0-t7 = ## tenps (not preserved by subroutines)
R24-R25, t8-t9 = ## tenps (not preserved by subroutines)
##  can be used w thout saving
R16- R23, s0-s7 = ## preserved by subroutines
##  save before using,
## restore before return
R26- 27, kO-k1 = ## reserved for interrupt handl er
R28, ap = ## gl obal pointer
## (for easy access to sone vari abl es)
R29, sp = ## stack pointer
R30, s8/fp = ## 9th subroutine reg / franme pointer
R31, ra = ## return addr (used by jal)
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Threads and Concurrency

What is a Thread?

¢ A thread represents the control state of an executing program.

¢ Athread has an associatedntext(or state), which consists of

— the processor’'s CPU state, including the values of the program counter
(PC), the stack pointer, other registers, and the execution mode
(privileged/non-privileged)

— a stack, which is located in the address space of the thread’s process

Imagine that you would like to suspend the program execution, and
resume it again later. Think of the thread context as the information
you would need in order to restart program execution from where
it left off when it was suspended.
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Threads and Concurrency 5
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Threads and Concurrency

Concurrent Threads

e more than one thread may exist simultaneously (why might this be a good
idea?)

e each thread has its own context, though they may share access to program
code and data

e 0on a uniprocessor (one CPU), at most one thread is actually executing at any
time. The others are paused, waiting to resume execution.

e 0n a multiprocessor, multiple threads may execute at the same time, but if
there are more threads than processors then some threads will be paused an

waiting
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Threads and Concurrency 7

Example: Concurrent Mouse Simulations

static void nouse_simulation(void * unusedpoi nter,
unsi gned | ong nobusenunber)

int i; unsigned int bow;

for(i=0;i<Nunloops;i++) {
/[ for now, this npbuse chooses a random bow from
* which to eat, and it is not synchronized with
* other cats and mce
*/
/+ legal bow nunbers range from1l to NunBow s */
bowl = ((unsigned int)randon() % NunBow s) + 1;
nmouse_eat (bow , 1);

/* indicate that this mouse is finished */
V( Cat MouseWai t) ;
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Threads and Concurrency 8

Implementing Threads

e athread library is responsibile for implementing threads

¢ the thread library stores threads’ contexts (or pointers to the threads’ contexts
when they are not running

¢ the data structure used by the thread library to store a thread context is
sometimes called thread control block

In the OS/161 kernel’s thread implementation, thread contexts are
stored int hr ead structures.
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Threads and Concurrency 9

Thread Library and Two Threads
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Threads and Concurrency 10

The OS/161t hr ead Structure

[+ see kern/include/thread. h */

struct thread {

/+= Private thread menbers - internal to the thread system */
struct pcb t_pcb; /* msc. hardware-specific stuff =/
char =t _nane; /* thread nane =*/
const void *t_sleepaddr; /* used for synchronization */
char =*t_stack; [+ pointer to the thread s stack */

[+ Public thread nenbers - can be used by other code */

struct addrspace *t_vnspace; [/* address space structure =/
struct vnode *t_cwd; [+ current working directory =*/

b
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Threads and Concurrency 11

Thread Library and Two Threads (0S/161)

memory

—
stack 1 stack 2

== === =

<

X ) i

Z

/ I\ thread library

thread structures

CPU registers thread 1 context (running thread)
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Threads and Concurrency 12

Context Switch, Scheduling, and Dispatching

the act of pausing the execution of one thread and resuming the execution of
another is called é&hread) context switch

what happens during a context switch?

1. save the context of the currently running thread
2. decide which thread will run next
3. restore the context of the thread that is to run next

the act of saving the context of the current thread and installing the context of
the next thread to run is calletispatching(the next thread)

sounds simple, but .
— architecture-specific implementation
— thread must save/restore its context carefully, since thread execution
continuously changes the context
— can be tricky to understand (at what point does a thread actually stop?
what is it executing when it resumes?)

CS350 Operating Systems Winter 2012
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Threads and Concurrency 13

Dispatching on the MIPS (1 of 2)

[+ see kern/arch/m ps/mps/switch.S */
m ps_swi t ch:
/+ a0/al points to old/ new thread s control block */

[+ Allocate stack space for saving 11 registers. 11x4 = 44 =/
addi sp, sp, -44

[+ Save the registers */
sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)

sw s2, 8(sp)
sw sl, 4(sp)
sw s0, 0O(sp)

/+ Store the old stack pointer in the old control block =/
sw sp, 0(a0)
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Threads and Concurrency 14

Dispatching on the MIPS (2 of 2)

[+ Get the new stack pointer fromthe new control block */
lw sp, 0O(al)
nop /=* delay slot for |oad */

[+ Now, restore the registers */

lw s0, O(sp)

lw sl, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)
I w s4, 16(sp)
Iw s5, 20(sp)
I w s6, 24(sp)
lw s7, 28(sp)
I w s8, 32(sp)
l'w gp, 36(sp)
Iwra, 40(sp)

nop /+ delay slot for load =/

j ra /* and return. =/
addi sp, sp, 44 /+ in delay slot =/
.end mps_switch
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Threads and Concurrency 15

Thread Library Interface

¢ the thread library interface allows program code to manipulate threads
e one key thread library interface functionYgeld()

¢ Yield() causes the calling thread to stop and wait, and causes the thread librar
to choose some other waiting thread to run in its place. In other words, Yield()
causes a context switch.

e in addition toYi el d(), thread libraries typically provide other
thread-related services:
— create new thread
— end (and destroy) a thread

— cause a thread tolock (to be discussed later)
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Threads and Concurrency 16

The OS/161 Thread Interface (incomplete)

[+ see kern/include/thread. h =/

[+ create a new thread =/

int thread fork(const char *nane,
voi d »datal, unsigned |ong dataZ2,
void (*func)(void *, unsigned |ong),
struct thread **ret);

|+ destroy the calling thread */
void thread_exit(void);

[+ | et another thread run =/
void thread_yield(void);

/+ block the calling thread =/
voi d thread_sl eep(const void *addr);

/* unbl ock bl ocked threads x/
voi d thread wakeup(const void *addr);
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Threads and Concurrency 17

Creating Threads Usingt hr ead_f or k()

[+ from catnouse() in kern/asstl/catnouse.c */
[+ start NunmM ce npuse_sinul ation() threads =/
for (index = 0; index < NumM ce; index++) {

error = thread_fork("nouse_sinulation thread", NULL, i ndex,

nmouse_si nmul ati on, NULL) ;
if (error) {
pani c("nmouse_sinmulation: thread fork failed: %\n",
strerror(error));

[+ wait for all of the cats and mice to finish before
termnating */

for(i=0; i < (NumCats+NumM ce); i++) {
P( Cat MouseWai t) ;
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Threads and Concurrency 18

Scheduling

e scheduling means deciding which thread should run next
e scheduling is implemented bysgheduler, which is part of the thread library

e simple FIFO scheduling:
— scheduler maintains a queue of threads, often calledetidy queue
— the first thread in the ready queue is the running thread

— on a context switch the running thread is moved to the end of the ready
queue, and new first thread is allowed to run

— newly created threads are placed at the end of the ready queue

e more on scheduling later .
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Threads and Concurrency 19

Preemption

Yi el d() allows programs t@oluntarily pause their execution to allow
another thread to run

sometimes it is desirable to make a thread stop running even if it has not
calledYi el d()

this kind ofinvoluntarycontext switch is callegreemptiorof the running
thread

to implement preemption, the thread library must have a means of “getting
control” (causing thread library code to be executed) even though the
application has not called a thread library function

this is normally accomplished usimgterrupts
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Threads and Concurrency 20

Review: Interrupts

an interrupt is an event that occurs during the execution of a program

interrupts are caused by system devices (hardware), e.g., a timer, a disk
controller, a network interface

when an interrupt occurs, the hardware automatically transfers control to a
fixed location in memory

at that memory location, the thread library places a procedure called an
interrupt handler
the interrupt handler normally:

1. saves the current thread context (in OS/161, this is savettap frame
on the current thread’s stack)

2. determines which device caused the interrupt and performs device-specifi
processing

3. restores the saved thread context and resumes execution in that context
where it left off at the time of the interrupt.

CS350 Operating Systems Winter 2012
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Threads and Concurrency 21

Round-Robin Scheduling

e round-robinis one example of a preemptive scheduling policy

e round-robin scheduling is similar to FIFO scheduling, except that it is
preemptive

e as in FIFO scheduling, there is a ready queue and the thread at the front of th
ready queue runs

¢ unlike FIFO, a limit is placed on the amount of time that a thread can run
before it is preempted

e the amount of time that a thread is allocated is called the schedyliagtum

¢ when the running thread’s quantum expires, it is preempted and moved to the
back of the ready queue. The thread at the front of the ready queue is
dispatched and allowed to run.

CS350 Operating Systems Winter 2012

Threads and Concurrency 22

Implementing Preemptive Scheduling

e suppose that the system timer generates an interrupt eviemg units, e.g.,
once every millisecond

e suppose that the thread library wants to use a scheduling quantufo0tz,
i.e., it will preempt a thread after half a second of execution

¢ to implement this, the thread library can maintain a variable called
runni ng_ti me to track how long the current thread has been running:

— when a thread is intially dispatchedynni ng_t i ne is set to zero

— when an interrupt occurs, the timer-specific part of the interrupt handler
can increment unni ng_t i me and then test its value
« if runni ng_t i me is less thany, the interrupt handler simply returns
and the running thread resumes its execution
« if runni ng_t i me is equal tog, then the interrupt handler invokes
Yi el d() to cause a context switch
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Threads and Concurrency 23

0S/161 Stack after Preemption

application
stack frame(s)

stack growth

trap frame

interrupt handling

stack frame(s)

Yield()
stack frame

saved thread
context
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Threads and Concurrency 24

0S/161 Stack after Voluntary Context Switch ¢ hr ead_yi el d())

application
stack frame(s)

stack growth

thread_yield()
stack frame

saved thread
context
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Synchronization 1

Concurrency

e On multiprocessors, several threads can execute simultaneously, one on eact
processor.

e On uniprocessors, only one thread executes at a time. However, because of
preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on unipro-
Cessors.
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Synchronization 2

Thread Synchronization

e Concurrent threads can interact with each other in a variety of ways:

— Threads share access, through the operating system, to system devices
(more on this later. .)

— Threads may share access to program data, e.g., global variables.
e A common synchronization problem is to enforoetual exclusionwhich

means making sure that only one thread at a time uses a shared object, e.qg.,
variable or a device.

e The part of a program in which the shared object is accessed is called a
critical section

CS350 Operating Systems Winter 2012




Synchronization 3

Critical Section Example (Part 1)

int listoremovefront(list *Ip) {
int num
list_elenment xel ement;
assert(!is_empty(lp));
element = | p->first;
num = | p->first->item
if (Ip->first == 1p->last) {
| p->first = |p->last = NULL;
} else {
| p->first
}
| p->num.in_list--;
free(el enent);
return num

el enent - >next ;

}
Thel i st _renove_f ront function is a critical section. It may
not work properly if two threads call it at the same time on the
samd i st . (Why?)
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Synchronization 4

Critical Section Example (Part 2)

void |ist_append(list *lp, int newitem {
list_element *elenment = malloc(sizeof (list_elenent));
element->item = newitem
assert(lisanlist(lp, newitem);
if (isenpty(lp)) {
| p->first = elenent; |p->last = el enent;
} else {
| p- >l ast->next = elenent; |p->last = el enent;

}

| p- >numi n_| i st ++;

Thel i st _append function is part of the same critical section as
l'ist_renove_front. It may not work properly if two threads
call it at the same time, or if a thread calls it while another has
calledl i st _remove_f ront

CS350 Operating Systems Winter 2012
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Synchronization 5

Enforcing Mutual Exclusion

e mutual exclusion algorithms ensure that only one thread at a time executes th
code in a critical section
¢ several techniques for enforcing mutual exclusion

— exploit special hardware-specific machine instructions, eegt;and-seor
compare-and-swaphat are intended for this purpose

— use mutual exclusion algorithms, e.Beterson’s algorithmthat rely only
on atomic loads and stores

— control interrupts to ensure that threads are not preempted while they are
executing a critical section
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Synchronization 6

Disabling Interrupts
e On a uniprocessor, only one thread at a time is actually running.
¢ If the running thread is executing a critical section, mutual exclusion may be
violated if

1. the running thread is preempted (or voluntarily yields) while it is in the
critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters
the same critical section that the preempted thread was in

e Since preemption is caused by timer interrupts, mutual exclusion can be
enforced by disabling timer interrupts before a thread enters the critical
section, and re-enabling them when the thread leaves the critical section.

This is the way that the 0OS/161 kernel enforces mu-
tual exclusion. There is a simple interfacep( hi gh(),

spl 0(), spl x()) for disabling and enabling interrupts. See
kern/ arch/ m ps/incl ude/ spl. h.
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Synchronization 7

Pros and Cons of Disabling Interrupts

e advantages:
— does not require any hardware-specific synchronization instructions

— works for any number of concurrent threads

¢ disadvantages:

— indiscriminate: prevents all preemption, not just preemption that would
threaten the critical section

— ignoring timer interrupts has side effects, e.g., kernel unaware of passage

of time. (Worse, OS/161'spl hi gh() disablesall interrupts, not just
timer interrupts.) Keep critical sectiosfortto minimize these problems.

— will not enforce mutual exclusion on multiprocessors (why??)
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Synchronization 8

Peterson’s Mutual Exclusion Algorithm

/= shared variables x/

/* note: one flag array and turn variable =/

/= for each critical section */

bool ean flag[2]; /* shared, initially false */

int turn; [+ shared =/

flag[i] = true; /= for one thread, i=0 and j=1 =/
turn = j; [+ for the other, i=1and j=0 */
while (flag[j] && turn ==j) { } /* busy wait =/
critical section /* e.g., call to list_renovefront =/

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but works only for
two threads. (Why?)

CS350 Operating Systems Winter 2012
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Synchronization 9

Hardware-Specific Synchronization Instructions

e atest-and-set instructiatomicallysets the value of a specified memory
location and either

— places that memory locationd value into a register, or

— checks a condition against the memory location’s old value and records the
result of the check in a register

e for presentation purposes, we will abstract such an instruction as a function
Test AndSet (addr ess, val ue), which takes a memory location
(addr ess) and a value as parameters. It atomically star@ksue at the
memory location specified byddr ess and returns the previous value stored
at that address
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Synchronization 10

A Spin Lock Using Test-And-Set

a test-and-set instruction can be used to enforce mutual exclusion

e for each critical section, definelaock variable
bool ean I ock; /* shared, initially false */

We will use the lock variable to keep track of whether there is a thread in the
critical section, in which case the valuelabck will be t r ue

e before a thread can enter the critical section, it does the following:
whil e (Test AndSet (& ock,true)) { } /* busy-wait =*/

e when the thread leaves the critical section, it does

|l ock = false;

¢ this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known asn lock since a thread
“spins” in the while loop until the critical section is free. Spin locks
are widely used on multiprocessors.
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Synchronization 11

Semaphores

e A semaphore is a synchronization primitive that can be used to enforce mutua
exclusion requirements. It can also be used to solve other kinds of
synchronization problems.

e A semaphore is an object that has an integer value, and that supports two
operations:

P: if the semaphore value is greater ttgrdecrement the value. Otherwise,
wait until the value is greater th@nand then decrement it.

V: increment the value of the semaphore

e Two kinds of semaphores:
counting semaphores:can take on any non-negative value

binary semaphores: take on only the valuegand1. (V on a binary
semaphore with valué has no effect.)

By definition, theP andV operations of a semaphore at®mic
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Synchronization 12

0S/161 Semaphores

struct senmaphore {
char =*nane;
volatile int count;

=

struct semaphore *semcreate(const char =*nane,
int initial _count);

void P(struct semaphore *);

void V(struct semaphore *);

voi d semdestroy(struct semaphore *);

see
e kern/include/synch. h

e kern/thread/synch. c

CS350 Operating Systems Winter 2012
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Synchronization 13

Mutual Exclusion Using a Semaphore

struct senmaphore =*s;
s = semcreate("MySemL", 1); /= initial value is 1 =/

P(s); /=* do this before entering critical section */

critical section /* e.g., call to list_renovefront =/

V(s); [/x do this after leaving critical section */
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Synchronization 14

Producer/Consumer Synchronization

e suppose we have threads that add items to a list (producers) and threads that
remove items from the list (consumers)

e suppose we want to ensure that consumers do not consume if the list is empty
- instead they must wait until the list has something in it

e this requires synchronization between consumers and producers

e semaphores can provide the necessary synchronization, as shown on the nex
slide
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Synchronization 15

Producer/Consumer Synchronization using Semaphores

struct semaphore =*s;
s = semcreate("ltens", 0); /* initial value is 0 */

Pr oducer’ s Pseudo- code:
add itemto the list (call list_append())
V(s);

Consumner’ s Pseudo- code:
P(s);
renove itemfromthe list (call list_removefront())

The Items semaphore does not enforce mutual exclusion on the
list. If we want mutual exclusion, we can also use semaphores to
enforce it. (How?)
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Synchronization 16

Bounded Buffer Producer/Consumer Synchronization

e suppose we add one more requirement: the number of items in the list should

not exceedN

e producers that try to add items when the list is full should be made to wait
until the list is no longer full

e We can use an additional semaphore to enforce this new constraint:

— semaphoré&ul | is used to count the number of full (occupied) entries in
the list (to ensure nothing is produced if the list is full)

— semaphoré&ul | is used to count the number of empty (unoccupied)
entries in the list (to ensure nothing is consumed if the list is empty)

struct semaphore *full;
struct semaphore *enpty;
full = semcreate("Full", 0); /[« initial value
enpty = semcreate("Enpty", N; /* initial value

0 */
N */

CS350 Operating Systems Winter 2012
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Synchronization 17

Bounded Buffer Producer/Consumer Synchronization with Semaphores

Producer’s Pseudo- code:
P(enpty);
add itemto the list (call |ist_append())
V(full);

Consuner’s Pseudo- code:

P(full);
renove itemfromthe list (call list_renmovefront())
V(enpty);
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Synchronization 18
0S/161 Semaphores: P()
voi d

P(struct senmaphore *sen

int spl;
assert(sem ! = NULL);

| *

* May not block in an interrupt handl er.

* For robustness, always check, even if we can actually
* conpl ete the P wi thout bl ocking.

* [

assert (i n.i nterrupt==0);

spl = spl high();
whil e (sem >count ==0) {
t hread_sl eep(sen);

assert (sem >count >0);
sem >count - -;

spl x(spl);
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Synchronization 19

Thread Blocking

e Sometimes a thread will need to wait for an event. One example is on the
previous slide: a thread that attempts a P() operation on a zero-valued
semaphore must wait until the semaphore’s value becomes positive.

e other examples that we will see later on:

— wait for data from a (relatively) slow device
— wait for input from a keyboard
— wait for busy device to become idle

e In these circumstances, we do not want the thread to run, since it cannot do
anything useful.

e To handle this, the thread scheduler tdockthreads.
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Synchronization 20

Thread Blocking in OS/161

e OS/161 thread library functions:

—void thread.sl eep(const void *addr)
« blocks the calling thread on addresddr

—voi d thread wakeup(const void *addr)
+ unblock all threads that are sleeping on addeahsr

e t hread_sl eep() is much liket hr ead_yi el d() . The calling thread
voluntarily gives up the CPU, the scheduler chooses a new thread to run, and
dispatches the new thread. However

— after at hr ead_yi el d(), the calling thread iseadyto run again as
soon as it is chosen by the scheduler

— after at hr ead_sl eep(), the calling thread is blocked, and should not
be scheduled to run again until after it has been explicitly unblocked by a
calltot hr ead wakeup() .

CS350 Operating Systems Winter 2012
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Synchronization 21
Thread States
e avery simple thread state transition diagram
guantum expires
or thread_yield()
dispatch
got resource or event need resource or event
(thread_wakeup()) (thread_sleep())
e the states:
running: currently executing
ready: ready to execute
blocked: waiting for something, so not ready to execute.
CS350 Operating Systems Winter 2012
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0S/161 Semaphores: V() kern/thread/synch.c
voi d
V(struct semaphore *sem
{
int spl;
assert(sem ! = NULL);
spl = spl high();
sem >count ++;
assert (sem >count >0) ;
t hr ead_wakeup(sem ;
spl x(spl);
}
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Synchronization 23

0S/161 Locks

e OS/161 also uses a synchronization primitive calléoci Locks are
intended to be used to enforce mutual exclusion.

struct lock *myl ock = | ock_create("LockNanme");

| ock_aqui re( nyl ock) ;
critical section /+* e.g., call to list_renmovefront =/
| ock_rel ease(nyl ock) ;

e Alock is similar to a binary semaphore with an initial value of 1. However,
locks also enforce an additional constraint: the thread that releases a lock
must be the same thread that most recently acquired it.

e The system enforces this additional constraint to help ensure that locks are
used as intended.
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Condition Variables

e OS/161 supports another common synchronization primiteadition
variables

e each condition variable is intended to work together with a lock: condition
variables are only usddom within the critical section that is protected by the
lock

e three operations are possible on a condition variable:

wait: this causes the calling thread to block, and it releases the lock
associated with the condition variable

signal: if threads are blocked on the signaled condition variable, then one of
those threads is unblocked

broadcast: like signal, but unblocks all threads that are blocked on the
condition variable
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Using Condition Variables

e Condition variables get their name because they allow threads to wait for
arbitrary conditions to become true inside of a critical section.

e Normally, each condition variable corresponds to a particular condition that is
of interest to an application. For example, in the bounded buffer
producer/consumer example on the following slides, the two conditions are:

— count > 0 (condition variablenot enpt y)
— count < N (condition variablenot f ul I')

¢ when a condition is not true, a thread asai t on the corresponding
condition variable until it becomes true

e when a thread detects that a condition it true, it issegnal or br oadcast
to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that
has no waiters haso effect Signals do not accumulate.
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Waiting on Condition Variables

e when a blocked thread is unblocked @ygnal orbr oadcast), it
reacquires the lock before returning from thei t call

e athread is in the critical section when it calai t , and it will be in the
critical section whemai t returns. However, in between the call and the
return, while the caller is blocked, the caller is out of the critical section, and
other threads may enter.

¢ In particular, the thread that caks gnal (or br oadcast ) to wake up the
waiting thread will itself be in the critical section when it signals. The waiting
thread will have to wait (at least) until the signaller releases the lock before it
can unblock and return from tivaai t call.

This describes Mesa-style condition variables, which are used in
0S/161. There are alternative condition variable semantics (Hoare
semantics), which differ from the semantics described here.
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Bounded Buffer Producer Using Condition Variables

int count = 0; /* must initially be 0 */
struct | ock *nutex; /= for mutual exclusion */
struct cv *notfull, *notenpty; /* condition variables */

/* Initialization Note: the lock and cv’'s nust be created
* using |lock.create() and cv._create() before Produce()
* and Consune() are called =/

Produce(item {
| ock_acqui r e( mut ex) ;
while (count == N) {
cvwait(notfull, nutex);
¥

add itemto buffer (call |ist_append())
count = count + 1;

cv_signal (notenpty, nutex);

| ock_r el ease( nut ex) ;

}
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Bounded Buffer Consumer Using Condition Variables

Consune() {
| ock_acqui r e( mut ex) ;
while (count == 0) {
cv_wai t (notenpty, mutex);
¥
renove itemfrombuffer (call |ist_renovefront())
count = count - 1,
cv.signal (notfull, nutex);
| ock_r el ease( nmut ex) ;
}

Both Produce() and Consume() call.exait() inside of awhi | e
loop. Why?
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Monitors

e Condition variables are derived fromonitors. A monitor is a programming
language construct that provides synchronized access to shared data. Monito
have appeared in many languages, e.g., Ada, Mesa, Java.

e a monitor is essentially an object with special concurrency semantics
e itis an object, meaning
— it has data elements

— the data elements are encapsulated by a set of methods, which are the on
functions that directly access the object’s data elements
¢ only onemonitor method may be active at a time, i.e., the monitor methods
(together) form a critical section
— if two threads attempt to execute methods at the same time, one will be
blocked until the other finishes

e inside a monitor, condition variables can be declared and used
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Monitors in 0S/161

e The C language, in which OS/161 is written, does not support monitors.

e However, programming convention and OS/161 locks and condition variables
can be used to provide monitor-like behavior for shared kernel data structures
— define a C structure to implement the object’s data elements

— define a set of C functions to manipulate that structure (these are the objec
“methods”)

— ensure that only those functions directly manipulate the structure
— create an OS/161 lock to enforce mutual exclusion

— ensure that each access method acquires the lock when it starts and
releases the lock when it finishes

— if desired, define one or more condition variables and use them within the
methods.
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Deadlocks

e Suppose there are two threads and two lotk& kA andl ockB, both
initially unlocked.

e Suppose the following sequence of events occurs
1. Thread 1 doekock_acqui re(| ockA) .
2. Thread 2 doekock_acqui re( | ockB).

3. Thread 1 doekock_acqui r e(| ockB) and blocks, becaudeockB is
held by thread 2.

4. Thread 2 doesock_acqui r e(| ockA) and blocks, becaudeockAis
held by thread 1.

These two threads ardeadlocked- neither thread can make
progress. Waiting will not resolve the deadlock. The threads are
permanently stuck.
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Deadlocks (Another Simple Example)

e Suppose a machine hé$ MB of memory. The following sequence of events
occurs.

1. ThreadA starts, request¥) MB of memory.
2. ThreadB starts, also request® MB of memory.

3. ThreadA requests an addition&8IMB of memory. The kernel blocks
threadA since there is only MB of available memory.

4. ThreadB requests an additionalMB of memory. The kernel blocks
threadB since there is not enough memory available.

These two threads are deadlocked.
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Resource Allocation Graph (Example)

R1 R2 R3
JEILLLGLY.
T1 @ T3

resource requeét\ /esource allocation

o o

R4 R5

Is there a deadlock in this system?
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Resource Allocation Graph (Another Example)
R1 R2 R3
T1 T2 T3
R4 R5
Is there a deadlock in this system?
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Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has
resources allocated to it. A thread may hold several resources, but to do so it
must make a single request for all of them.

Preemption: take resources away from a thread and give them to another (usually
not possible). Thread is restarted when it can acquire all the resources it need

Resource Ordering: Order (e.g., number) the resource types, and require that
each thread acquire resources in increasing resource type order. That is, a
thread may make no requests for resources of type less than or egifat to
is holding resources of type
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Deadlock Detection and Recovery

e main idea: the system maintains the resource allocation graph and tests it to
determine whether there is a deadlock. If there is, the system must recover
from the deadlock situation.

e deadlock recovery is usually accomplished by terminating one or more of the
threads involved in the deadlock

¢ when to test for deadlocks? Can test on every blocked resource request, or cé
simply test periodically. Deadlocks persist, so periodic detection will not
“miss” them.

Deadlock detection and deadlock recovery are both costly. This
approach makes sense only if deadlocks are expected to be infre-
quent.
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Detecting Deadlock in a Resource Allocation Graph

e System State Notation:
— D;: demand vector for thredd;
— A;: current allocation vector for thread

— U: unallocated (available) resource vector

e Additional Algorithm Notation:
— R: scratch resource vector

— f;: algorithm is finished with thread;? (boolean)
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Detecting Deadlock (cont’d)

/[ initialization */
R = U
for all 4, f,= false
/* can each thread finish? */
while 3 (- fi A (Di < R)){
R = R + A;
fi = true
}
[+ if not, there is a deadl ock */
if 3¢ (- f; ) then report deadl ock
el se report no deadl ock
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Deadlock Detection, Positive Example

0,1,0,0,0 R1

Dlz( ) R2 R3

e Dy =(0,0,0,0,1) o e6e o o
D3 = ( )
)

= (0,1,0,0,0 \ \l \ /

o A1 =(1,0,0,0,0 ) (1)
o Ay, = ((), 2,0,0, ()) resource requeé\ %esource allocation
R5

A3 = (051715071) .
U =(0,0,1,1,0) -

The deadlock detection algorithm will terminate with ==
fo == f3 ==Tfal se, so this system is deadlocked.
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Deadlock Detection, Negative Example

R1 R2 R3
e D; =(0,1,0,0,0)
e Dy =(1,0,0,0,0) .& Q ? /.
e D3 =(0,0,0,0,0) \ \l /
e A, =(1,0,0,1,0) T1 T2 5
o Ay =1(0,2,1,0,0) \ /
e A3 =(0,1,1,0,1)

o °

R4 R5

U = (0,0,0,0,0)

This system is not in deadlock. It is possible that the threads will
run to completion in the ordéfs, 77, Ts.
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Processes and the Kernel 1

What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of
e anaddress spaceavhich represents the memory that holds the program’s
code and data
e athreadof execution (possibly several threads)
e other resources associated with the running program. For example:
— open files
— sockets
attributes, such as a name (process identifier)

A process with one thread issequentiaprocess. A process with
more than one thread isc@ncurrentprocess.

CS350 Operating Systems Winter 2012

Processes and the Kernel 2

Multiprogramming

e multiprogramming means having multiple processes existing at the same time
e most modern, general purpose operating systems support multiprogramming
¢ all processes share the available hardware resources, with the sharing

coordinated by the operating system:

— Each process uses some of the available memory to hold its address spac
The OS decides which memory and how much memory each process gets

— OS can coordinate shared access to devices (keyboards, disks), since
processes use these devices indirectly, by making system calls.

— Processesmesharethe processor(s). Again, timesharing is controlled by
the operating system.

e OS ensures that processes are isolated from one another. Interprocess
communication should be possible, but only at the explicit request of the
processes involved.
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The OS Kernel

e The kernel is a program. It has code and data like any other program.

e Usually kernel code runs in a privileged execution mode, while other
programs do not
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An Application and the Kernel

application

kernel

stack

data

code

memory

thread library

CPU registers
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Kernel Privilege, Kernel Protection

What does it mean to run in privileged mode?

Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

privileges vary from platform to platform, but may include:
— ability to execute special instructions (likal t)
— ability to manipulate processor state (like execution mode)

— ability to access memory addresses that can’t be accessed otherwise

kernel ensures that it isolatedfrom processes. No process can execute or
change kernel code, or read or write kernel data, except through controlled
mechanisms like system calls.
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System Calls

e System calls are an interface between processes and the kernel.
e A process uses system calls to request operating system services.

e From point of view of the process, these services are used to manipulate the
abstractions that are part of its execution environment. For example, a proces
might use a system call to

— open afile

send a message over a pipe

create another process

increase the size of its address space
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How System Calls Work

e The hardware provides a mechanism that a running program can use to caus
a system call. Often, it is a special instruction, e.g., the M8Scal |
instruction.

e What happens on a system call:
— the processor is switched to system (privileged) execution mode

— key parts of the current thread context, such as the program counter, are
saved

— the program counter is set to a fixed (determined by the hardware) memory
address, which is within the kernel's address space
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System Call Execution and Return

e Once a system call occurs, the calling thread will be executing a system call
handler, which is part of the kernel, in privileged mode.

e The kernel’'s handler determines which service the calling process wanted, an
performs that service.
e When the kernel is finished, it returns from the system call. This means:

— restore the key parts of the thread context that were saved when the syste
call was made

— switch the processor back to unprivileged (user) execution mode

e Now the thread is executing the calling process’ program again, picking up
where it left off when it made the system call.

A system call causes a thread to stop executing application code
and to start executing kernel code in privileged mode. The system
call return switches the thread back to executing application code
in unprivileged mode.
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System Call Diagram

Process Kernel

T

|
|
| system call

thread
execution
path

time
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0S/161cl ose System Call Description

Library: standard C library (libc)
Synopsis:

#i ncl ude <uni std. h>
i nt
close(int fd);

Description: The file handld d is closed.. ..

Return Values: On success;| ose returns 0. On error, -1 is returned and

er r no is set according to the error encountered.

Errors:
EBADF: f dis not a valid file handle
EIO: A hard I/O error occurred
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An Example System Call: A Tiny OS/161 Application that Uses| ose

/= Program uw-testbin/syscall.c */
#i ncl ude <uni std. h>

#i ncl ude <errno. h>

i nt
mai n()
{
Int Xx;
x = cl ose(999);
if (x <0) {
return errno;

}

return Xx;
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Disassembly listing of uw-testbin/syscall

00400050 <mai n>:
400050: 27bdffe8
400054: af bf 0010
400058: 0c100047
40005c: 240403e7
400060: 04410003
400064: 00000000
400068: 3c021000
40006c: 8c420000
400070: 8f bf 0010
400074: 00000000
400078: 03e00008
40007c: 27bd0018

addi u sp, sp,-24

Sw ra, 16(sp)

jal 40011c <cl ose>
i a0, 999

bgez vO0, 400070 <mai n+0x20>
nop

[ui vO0, 0x1000

| w vO, 0(vO0)

lwra, 16(sp)

nop

jr ra

addi u sp, sp, 24

The above can

be obtained by disassembling the compiled

syscal | executable file wittbs350- obj dunp -d
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System Call Wrapper Functions from the Standard Library

00400114 <wite>:
400114: 08100030 | 4000c0 <__syscall>
400118: 24020006 Ii vO,6

0040011c <cl ose>:
40011c: 08100030 | 4000c0 <__syscall>
400120: 24020007 Ii vO,7

00400124 <reboot >:
400124: 08100030 | 4000c0 <__syscall>
400128: 24020008 1Ii vO,8

The above is disassembled code from the standard C library
(libc), which is linked withuw-t est bi n/ syscal | . 0. See
lib/libc/syscalls.Sfor more information about how the
standard C library is implemented.
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0S/161 MIPS System Call Conventions

e When thesyscal | instruction occurs:

— Aninteger system call code should be located in register R2 (v0)

— Any system call arguments should be located in registers R4 (a0), R5 (al)
R6 (a2), and R7 (a3), much like procedure call arguments.

e When the system call returns

— register R7 (a3) will contain a O if the system call succeeded, or a 1 if the
system call failed

— register R2 (v0) will contain the system call return value if the system call
succeeded, or an error number (errno) if the system call failed.

CS350
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0S/161 System Call Code Definitions

#defi ne SYS read
#define SYS wite
#define SYS cl ose
#define SYS reboot
#define SYS sync
#defi ne SYS_sbrk 10

©O© 00 N o O

This comes fronker n/ i ncl ude/ ker n/ cal | no. h. The files
in kern/ i ncl ude/ ker n define things (like system call codes)
that must be known by both the kernel and applications.
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The OS/161 System Call and Return Processing

004000c0 <__syscall >:
4000c0: 0000000c syscal
4000c4: 10e00005 beqgz a3,4000dc <__syscal | +Ox1lc>
4000c8: 00000000 nop
4000cc: 3c011000 lui at, 0x1000
4000d0: ac220000 sw vO, O(at)
4000d4: 2403ffff i vi,-1
4000d8: 2402ffff i vO,-1
4000dc: 03e00008 jr ra
4000e0: 00000000 nop

The system call and return processing, from the standard C library.
Like the rest of the library, this is unprivileged, user-level code.
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0S/161 MIPS Exception Handler

exception:
move k1, sp /* Save previous stack pointer in k1 =*/
nfcO kO, cO_status /* Get status register =/
andi kO, kO, CST _KuUp /* Check the we-were-in-user-node bit x/

beq kO, $0, 1if [+ If clear,fromkernel, al ready have stack
nop [+ delay slot */
/+ Coming fromuser node - |oad kernel stack into sp */
|l a kO, curkstack /* get address of "curkstack" =/
I w sp, 0(kO) [+ get its value =/
nop /+ delay slot for the |oad */
1:
nfcO kO, cO _cause /* Now, |oad the exception cause. x/
j common_exception [+ Skip to common code */
nop [+ delay slot */
When thesyscal | instruction occurs, the MIPS transfers control to
addresDx80000080. This kernel exception handler lives there. See
kern/ arch/ nm ps/ m ps/ exception. S
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0S/161 User and Kernel Thread Stacks

application kernel

Y2
stack || data code

- o = o == === =

thread library

CPU registers

Each OS/161 thread has two stacks, one that is used while the
thread is executing unprivileged application code, and another that
is used while the thread is executing privileged kernel code.
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0S/161 MIPS Exception Handler (cont’d)

Theconmon_except i on code does the following:

1. allocates d@rap frameon the thread’s kernel stack and saves the user-level

application’s complete processor state (all registers except kO and k1) into the

trap frame.
2. calls them ps_t r ap function to continue processing the exception.

3. whenm ps_t r ap returns, restores the application processor state from the
trap frame to the registers

4. issues MIP$ r andr f e (restore from exception) instructions to return
control to the application code. The instruction takes control back to
location specified by the application program counter wherstfecal |
occurred, and thef e (which happens in the delay slot of the) restores the
processor to unprivileged mode
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0S/161 Trap Frame

application

stack || data code memory stack

== === =

/ I\ thread library
I:I I:I I:I I:I I:I trap frame with saved

application state

CPU registers

While the kernel handles the system call, the application’s CPU
state is saved in a trap frame on the thread’s kernel stack, and the
CPU registers are available to hold kernel execution state.
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m ps_t r ap: Handling System Calls, Exceptions, and Interrupts

e On the MIPS, the same exception handler is invoked to handle system calls,
exceptions and interrupts

e The hardware sets a code to indicate the reason (system call, exception, or
interrupt) that the exception handler has been invoked

e 0S/161 has a handler function corresponding to each of these reasons. The
m ps_t r ap function tests the reason code and calls the appropriate function:
the system call handlen{ ps_syscal | ) in the case of a system call.

e M ps_trap can be found irker n/ ar ch/ m ps/ m ps/trap. c.

Interrupts and exceptions will be presented shortly
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0S/161 MIPS System Call Handler

m ps_syscal | (struct trapframe *tf) {
assert (curspl ==0);
callno = tf->tf_v0; retval = 0;
switch (callno) {
case SYS reboot:
err = sys_reboot(tf->tf_a0); /* in kern/main/main.c =/
br eak;

[+ Add stuff here =/

defaul t:
kprintf("Unknown syscall %\ n", callno);
err = ENOSYS;
br eak;

m ps_syscal |l checks the system call code and in-
vokes a handler for the indicated system call. See
kern/arch/ m ps/ m ps/syscal l.c
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0S/161 MIPS System Call Return Handling

if (err) {

tf->tf _v0 = err;

tf->tf_a3 = 1; [* signal an error =/
} else {

/= Success. =/

tf->tf_v0 = retval;

tf->tf_a3 = 0; /* signal no error =*/

/* Advance the PC, to avoid the syscall again. =/
tf->tf_epc += 4;

/= Make sure the syscall code didn't forget to | ower spl
assert (curspl ==0);

m ps_syscal | mustensure that the kernel adheres to the system

call return convention.
CS350 Operating Systems Winter 2012
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Exceptions

e Exceptions are another way that control is transferred from a process to the
kernel.

e Exceptions are conditions that occur during the execution of an instruction by
a process. For example, arithmetic overflows, illegal instructions, or page
faults (to be discussed later).

e Exceptions are detected by the hardware.

e When an exception is detected, the hardware transfers control to a specific
address.

e Normally, a kernel exception handler is located at that address.

Exception handling is similar to, but not identical to, system call
handling. (What is different?)
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MIPS Exceptions

EX | RQ 0 /* Interrupt =*/

EX_MOD 1 /+ TLB Modify (wite to read-only page) =/
EX TLBL 2 [+ TLB m ss on | oad */

EX TLBS 3 /+* TLB m ss on store =/

EX_ADEL 4 /+ Address error on |oad =/

EX ADES 5 [+ Address error on store x/

EX | BE 6 [+ Bus error on instruction fetch =/
EX_DBE 7 /* Bus error on data |load *or* store =/
EX_SYS 8 /= Syscall =*/

EX_BP 9 / = Breakpoi nt =/

EX_RI 10 /| Reserved (illegal) instruction */
EX_CPU 11 / = Coprocessor unusable */
EX_OVF 12 [+ Arithmetic overflow =/

In OS/161,m ps_t r ap uses these codes to decide whether it has
been invoked because of an interrupt, a system call, or an excep-
tion.
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Interrupts (Revisited)

¢ Interrupts are a third mechanism by which control may be transferred to the
kernel

e Interrupts are similar to exceptions. However, they are caused by hardware
devices, not by the execution of a program. For example:

— a network interface may generate an interrupt when a network packet
arrives

— adisk controller may generate an interrupt to indicate that it has finished
writing data to the disk

— atimer may generate an interrupt to indicate that time has passed
¢ Interrupt handling is similar to exception handling - current execution context

is saved, and control is transferred to a kernel interrupt handler at a fixed
address.
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Interrupts, Exceptions, and System Calls: Summary

e interrupts, exceptions and system calls are three mechanisms by which contr¢
is transferred from an application program to the kernel

¢ when these events occur, the hardware switches the CPU into privileged mod
and transfers control to a predefined location, at which a kévaedier
should be located

¢ the handler saves the application thread context so that the kernel code can b
executed on the CPU, and restores the application thread context just before
control is returned to the application
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Implementation of Processes

e The kernel maintains information about all of the processes in the system in a
data structure often called the process table.
e Per-process information may include:
— process identifier and owner
— current process state and other scheduling information
— lists of resources allocated to the process, such as open files

— accounting information

In OS/161, some process information (e.g., an address space
pointer) is kept in the hr ead structure. This works only because
each OS/161 process has a single thread.
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Implementing Timesharing

e whenever a system call, exception, or interrupt occurs, control is transferred
from the running program to the kernel

e at these points, the kernel has the ability to cause a context switch from the
running process’ thread to another process’ thread

e notice that these context switches always occur while a process’ thread is
executing kernel code

By switching from one process’s thread to another process’s
thread, the kernel timeshares the processor among multiple pro-
cesses.
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Two Processes in 0S/161

application #1 application #2

stack || data code stack
trap frame for app #1

| | | | | | saved kernel thread
context for thread #1

stack stack || data code

thread library

CPU registers
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Timesharing Example (Part 1)
Process A Kernel Process B
; B’s thread is
| system call ready, not running
| or e.xceptlon S
| orinterrupt | =
I return
! T o _______ __
e 1
- |
I A'sthread is v
) ready, not running
context switch
Kernel switches execution context to Process B.
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Timesharing Example (Part 2)

Process A Kernel Process B
‘ :
! :
| -
I :
‘ :
| :
b fpe e -z
ro
! =l _______ .
: |
: |
. : system call |
context switch : or exception |
: or interrupt |
\ :
| return <«—— B’sthread is.
; : ready, not running
\/ \]
Kernel switches execution context back to process A.
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Implementing Preemption

¢ the kernel uses interrupts from the system timer to measure the passage of
time and to determine whether the running process’s quantum has expired.

e atimer interrupt (like any other interrupt) transfers control from the running
program to the kernel.

e this gives the kernel the opportunity to preempt the running thread and
dispatch a new one.
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Preemptive Multiprogramming Example

Process A Kernel Process B

| timer interrupt

i I T Key:

| S N T ready thread

/ Tttt I running threac
z |

context ool
switches : !
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System Calls for Process Management

Linux 0S/161
Creation fork,execv fork,execv
Destruction _exit,kill _exit
Synchronization wait,waitpid,pause,. . . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage,.|.. getpid
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The Process Model

¢ Although the general operations supported by the process interface are
straightforward, there are some less obvious aspects of process behaviour th
must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?
What is in the address space? What is the initial thread context? Does it
have any other resources?

Multithreading: Are concurrent processes supported, or is each process
limited to a single thread?

Inter-Process Relationships: Are there relationships among processes, e.g,
parent/child? If so, what do these relationships mean?
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Virtual Memory 1

Virtual and Physical Addresses

Physical addresses are provided directly by the machine.

— one physical address space per machine

— the size of a physical address determines the maximum amount of
addressable physical memory

Virtual addresses (or logical addresses) are addresses provided by the OS to
processes.

— one virtual address spaper process

Programs use virtual addresses. As a program runs, the hardware (with help
from the operating system) converts each virtual address to a physical addres

The conversion of a virtual address to a physical address is cadidess
translation

On the MIPS, virtual addresses and physical addressex dogs
long. This limits the size of virtual and physical address spaces.
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Virtual Memory 2

Simple Address Translation: Dynamic Relocation

e hardware provides memory management umvhich includes aelocation
register

e at run-time, the contents of the relocation register are added to each virtual
address to determine the corresponding physical address

¢ the OS maintains a separate relocation register value for each process, and
ensures that relocation register is reset on each context switch
e Properties

— each virtual address space corresponds to a contiguous range of physical
addresses

— OS must allocate/deallocate variable-sized chunks of physical memory

— potential forexternal fragmentationf physical memory: wasted,
unallocated space
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Dynamic Relocation: Address Space Diagram

Proc 1 virtual address space physical memory
0 S 0
s A
max1
0 e
s A + maxl
C
max2
Proc 2

virtual address space

C + max2
2 -1
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Dynamic Relocation Mechanism
virtual address physical address
~— v bits—= ~— m bits —

l | l |
A

—®

[ |
~<— m bits —>

relocation
register
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Virtual Memory

Address Translation: Paging

e Each virtual address space is divided into fixed-size chunks gadlgels

e The physical address space is divided ifntones. Frame size matches page

size.

e OS maintains @age tabldor each process. Page table specifies the frame in

which each of the process’s pages is located.

e Atruntime, MMU translates virtual addresses to physical using the page table

of the running process.

e Properties

— simple physical memory management

— potential forinternal fragmentatiorof physical memory: wasted, allocated

space

— virtual address space need not be physically contiguous in physical space

after translation.
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Address Space Diagram for Paging
Proc 1 virtual address space physical memory
0
max1
0
max2
Proc 2
virtual address space
m
2 -1
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Paging Mechanism

virtual address physical address
Vv bits ~<~— mbits —>
page # ‘ of'fset‘ frame # ‘ offset‘
A A
S E -

—~<— m bits —>

page table base

register
frame #
protection and page table
other flags
CS350 Operating Systems Winter 2012
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Memory Protection

e during address translation, the MMU checks to ensure that the process uses
only valid virtual addresses

— typically, each PTE contains\alid bit which indicates whether that PTE
contains a valid page mapping

— the MMU may also check that the virtual page number does not index a
PTE beyond the end of the page table
e the MMU may also enforce other protection rules
— typically, each PTE containsraad-onlybit that indicates whether the
corresponding page may be modified by the process

e if a process attempts to violated these protection rules, the MMU raises an
exception, which is handled by the kernel

The kernel controls which pages are valid and which are protected
by setting the contents of PTEs and/or MMU registers.
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Virtual Memory 9

Roles of the Kernel and the MMU (Summary)

e Kernel:
— save/restore MMU state on context switches
— create and manage page tables
— manage (allocate/deallocate) physical memory

— handle exceptions raised by the MMU
e MMU (hardware):

— translate virtual addresses to physical addresses

— check for and raise exceptions when necessary
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Remaining Issues

translation speed: Address translation happens very frequently. (How
frequently?) It must be fast.

sparseness:Many programs will only need a small part of the available space for

their code and data.

the kernel: Each process has a virtual address space in which to run. What about

the kernel? In which address space does it run?
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Speed of Address Translation

e Execution of each machine instruction may involve one, two or more memory
operations

— one to fetch instruction
— one or more for instruction operands
e Address translation through a page table adds one extra memory operation

(for page table entry lookup) for each memory operation performed during
instruction execution

— Simple address translation through a page table can cut instruction
execution rate in half.

— More complex translation schemes (e.g., multi-level paging) are even
more expensive.
e Solution: include a Translation Lookaside Buffer (TLB) in the MMU
— TLB is a fast, fully associative address translation cache

— TLB hit avoids page table lookup
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TLB

e Each entry in the TLB contains a (page number, frame number) pair.

¢ If address translation can be accomplished using a TLB entry, access to the
page table is avoided.

e Otherwise, translate through the page table, and add the resulting translation
to the TLB, replacing an existing entry if necessary. madware controlled
TLB, this is done by the MMU. In goftware controlled'LB, it is done by the
kernel.

e TLB lookup is much faster than a memory access. TLB is an associative
memory - page numbers of all entries are checked simultaneously for a match
However, the TLB is typically small (typically hundreds, e.g. 128, or 256
entries).

¢ If the MMU cannot distinguish TLB entries from different address spaces,
then the kernel must clear or invalidate the TLB. (Why?)
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The MIPS R3000 TLB

e The MIPS has a software-controlled TLB that can hold 64 entries.

e Each TLB entry includes a virtual page number, a physical frame number, an
address space identifier (not used by OS/161), and several flags (valid,
read-only).

e OS/161 provides low-level functions for managing the TLB:

TLB ‘Write: modify a specified TLB entry

TLB _-Random: modify a random TLB entry
TLB _Read: read a specified TLB entry

TLB _Probe: look for a page number in the TLB

¢ If the MMU cannot translate a virtual address using the TLB it raises an
exception, which must be handled by OS/161.

Seekern/ arch/ m ps/include/tlb.h
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What is in a Virtual Address Space?

0x00400000 — 0x00401a0c
text (program code) and read—only data

growth

A R \

0x10000000 - 0x101200b0 s'gack
data high end of stack: Ox7fffffff

0x00000000 Oxffffffff

This diagram illustrates the layout of the virtual address space for
the OS/161 test applicatidrest bi n/ sor t
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Handling Sparse Address Spaces: Sparse Page Tables

ooooooooo - 0x00401a0¢

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

e Consider the page table foest bi n/ sort, assuming a 4 Kbyte page size:

— need2!? page table entries (PTES) to cover the bottom half of the virtual
address space.

— the text segment occupies 2 pages, the data segment occupies 289 pages
and OS/161 sets the initial stack size to 12 pages

e The kernel will mark a PTE as invalid if its page is not mapped.

e Inthe page table farest bi n/ sor t, only 303 of 2!° PTEs will be valid.

An attempt by a process to access an invalid page causes the MMU
to generate an exception (known apage faul} which must be
handled by the operating system.
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Segmentation

e Often, programs (likesor t ) need several virtual address segments, e.g, for
code, data, and stack.

e One way to support this is to tusegmentto first-class citizens, understood
by the application and directly supported by the OS and the MMU.

¢ Instead of providing a single virtual address space to each process, the OS
provides multiple virtual segments. Each segment is like a separate virtual
address space, with addresses that start at zero.

e With segmentation, a virtual address can be thought of as having two parts:

(segment ID, address within segment)

e Each segment:

— can grow (or shrink) independently of the other segments, up to some
maximum size

— has its own attributes, e.g, read-only protection
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Segmented Address Space Diagram

Proc 1 physical memory
0 0

segment 0

0
segment 1 -

0

Proc 2

segment 0
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Mechanism for Translating Segmented Addresses

physical address

—~<— m bits —>

]
®

virtual address

~— v bits—>

segment table

—~<— m bits —>

segment table base
register

length start

protection

This translation mechanism requires physically contiguous alloca-
tion of segments.
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Combining Segmentation and Paging

Proc 1 physical memory
0 0

segment 0

0
segment 1 -

0

Proc 2

segment 0
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Combining Segmentation and Paging: Translation Mechanism

virtual address physical address

v bits —~<— m bits —>

‘ seg # ‘ page#{offset‘ frame # | offset

segment table page table

1

—~<— m bits —>

segment table base
register

page table
length

protection
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0S/161 Address Spaces: dumbvm
e OS/161 starts with a very simple virtual memory implementation

e virtual address spaces are describe@byr space objects, which record
the mappings from virtual to physical addresses

struct addrspace {
#i f OPT_DUMBVM

vaddr _t as_vbasel; /* base virtual address of code segment =/
paddr _t as_pbasel; /* base physical address of code segnent =/
size_t as_npagesl; /* size (in pages) of code segnent =/
vaddr _t as_vbase2; /* base virtual address of data segment =/
paddr _t as_pbase2; /=* base physical address of data segnent =/
size_t as_npages2; /* size (in pages) of data segnment =/
paddr _t as_stackpbase; /* base physical address of stack =*/

#el se

[+ Put stuff here for your VM system x/

#endi f

}

This amounts to a slightly generalized version of simple dynamic
relocation, with three bases rather than one.
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Address Translation Under dunbvm

e the MIPS MMU tries to translate each virtual address using the entries in the
TLB

¢ If there is no valid entry for the page the MMU is trying to translate, the
MMU generates a TLB fault (called address exceptign

e Thevmf aul t function (se&ker n/ ar ch/ m ps/ m ps/ dunbvm c)
handles this exception for the OS/161 kernel. It uses information from the
current processaddr space to construct and load a TLB entry for the page.

e On return from exception, the MIPS retries the instruction that caused the
page fault. This time, it may succeed.

vmf aul t is not very sophisticated. If the TLB fills up, OS/161
will crash!
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Shared Virtual Memory

virtual memory sharing allows parts of two or more address spaces to overlap

shared virtual memory is:

— away to use physical memory more efficiently, e.g., one copy of a
program can be shared by several processes

— a mechanism for interprocess communication

sharing is accomplished by mapping virtual addresses from several processe
to the same physical address

unit of sharing can be a page or a segment
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Shared Pages Diagram

Proc 1 virtual address space physical memory
0

max1

max2

Proc 2
virtual address space
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Shared Segments Diagram

Proc 1 physical memory

0 0
segment 0
(shared) \
0
segment 1 -
0
segment 2 .

Proc 2

segment 0

segment 1
(shared) m
2 -1
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An Address Space for the Kernel

e Each process has its own address space. What about the kernel?

e Two possibilities

Kernel in physical space: disable address translation in privileged system
execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address
translation (e.g., switch page tables) when moving between privileged and
unprivileged code

e 0OS/161, Linux, and other operating systems use a third approach: the kernel
is mapped into a portion of the virtual address spacevefy process

e memory protection mechanism is used to isolate the kernel from applications

e one advantage of this approach: application virtual addresses (e.g., system cé
parameters) are easy for the kernel to use
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The Kernel in Process’ Address Spaces

Kernel
(shared, protected)

Process 1 Process 2
Address Space Address Space

Attempts to access kernel code/data in user mode result in memory
protection exceptions, not invalid address exceptions.
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Address Translation on the MIPS R3000

2GB 2GB
<«— user space ———><+——— kernel space ——
kuseg ksegO || ksegl kseg2
0.5GB || 0.5GB 1GB
A Lu A/T
0xc0000000
TLB mapped 0xa0000000
0x00000000 0x80000000 OKiiiiiiii
unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and data struc-
tures live in kseg0, devices are accessed through ksegl, and kseg2
is not used.
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Loading a Program into an Address Space

e When the kernel creates a process to run a particular program, it must create
an address space for the process, and load the program’s code and data into
that address space

e A program’s code and data is described ineaecutable filewhich is created
when the program is compiled and linked

e 0S/161 (and some other operating systems) expect executable files to be in
ELF (Executable andl inking Format) format

e The OS/16Jkxecv system call re-initializes the address space of a process
#i ncl ude <uni std. h>
i nt
execv(const char *program char =*xargs)

e Thepr ogr amparameter of thexecv system call should be the name of the
ELF executable file for the program that is to be loaded into the address space
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ELF Files

e ELF files contain address space segment descriptions, which are useful to the
kernel when it is loading a new address space

¢ the ELF file identifies the (virtual) address of the program’s first instruction

e the ELF file also contains lots of other information (e.g., section descriptors,
symbol tables) that is useful to compilers, linkers, debuggers, loaders and
other tools used to build programs
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Address Space Segments in ELF Files

e Each ELF segment describes a contiguous region of the virtual address space
e For each segment, the ELF file includes a segrnmageand a header, which
describes:
— the virtual address of the start of the segment
— the length of the segment in the virtual address space
— the location of the start of the image in the ELF file
— the length of the image in the ELF file

e the image is an exact copy of the binary data that should be loaded into the
specified portion of the virtual address space

¢ the image may be smaller than the address space segment, in which case the
rest of the address space segment is expected to be zero-filled

To initialize an address space, the kernel copies images from the
ELF file to the specifed portions of the virtual address space
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ELF Files and OS/161

e OS/161'sdunbvmimplementation assumes that an ELF file contains two
segments:

— atext segmentontaining the program code and any read-only data
— adata segmentontaining any other global program data

¢ the ELF file does not describe the stack (why not?)

e dunbvmcreates &tack segmerior each process. It is 12 pages long, ending
at virtual addres®Ox7f fff f f f

Look at kern/ userprog/ | oadel f.c to see how OS/161
loads segments from ELF files

CS350 Operating Systems Winter 2012

71



72

Virtual Memory 33

ELF Sections and Segments

¢ Inthe ELF file, a program’s code and data are grouped togethesaatmns,
based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data
¢ not all of these sections are present in every ELF file

e normally
— the. t ext and. r odat a sections together form the text segment
— the. dat a, . bss and. sbss sections together form the data segement

e space follocal program variables is allocated on the stack when the program
runs
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The uwt est bi n/ segnent s. ¢ Example Program (1 of 2)

#i ncl ude <uni std. h>
#define N  (200)

int x = Oxdeadbeef;

int t1;

int t2;

int t3;

i nt array[4096];

char const *str = "Hello World\n";
const int z = Oxabcddcba;

struct exanple {
i nt ypos;
i nt Xpos;

1
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The uwt est bi n/ segnent s. ¢ Example Program (2 of 2)

i nt

mai n()

{
int count = O;
const int value = 1;
tl1 =N,
t2 = 2;
count = x + t1;
t2 =z + t2 + val ue;

r eboot ( RB_POWERCFF) ;
return 0; /* avoid conpiler warnings */

}
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ELF Sections for the Example Program

Secti on Headers:

[Nr] Nare Type Addr Of Si ze Fl g
[ 0] NULL 00000000 000000 000000

[ 1] .text PROGBI TS 00400000 010000 000200 AX
[ 2] .rodata PROGBI TS 00400200 010200 000020 A
[ 3] .reginfo M PS_REGQ NFO 00400220 010220 000018 A
[ 4] .data PROGBI TS 10000000 020000 000010 WA
[ 5] .sbss NCBI TS 10000010 020010 000014 WAp
[ 6] .bss NCBI TS 10000030 020010 004000 WA

#iégs: W(wite), A (alloc), X (execute), p (processor specific)

## Size
#it O f
## Addr

nunber of bytes (e.qg.
of f set
vi rtual

addr ess

.text is 0x200 =
into the ELF file

512 bytes

The cs350-readel f program can be used to inspect OS/161 MIPS
ELF files: cs350- r eadel f

-a segnents

CS350

Operating Systems
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ELF Segments for the Example Program

Pr ogram Header s:

Type O fset Vi rt Addr PhysAddr FileSiz MenSiz Flg Align
REG NFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R  0x4
LOAD 0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000
LOAD 0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

segment info, like section info, can be inspected usingg®50- r eadel f
program

the REGINFO section is not used

the first LOAD segment includes the .text and .rodata sections

the second LOAD segment includes .data, .sbss, and .bss
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Contents of the Example Program’s. t ext Section

Contents of section .text:
400000 3c1c1001 279c8000 2408fff8 03a8e824 <...'...%...... $

## Decodi ng 3c1c1001 to determ ne instruction

## 0x3cl1lc1001 = binary 111100000111000001000000000001
## 0011 1100 0001 1100 0001 0000 0000 0001

## instr | rs | rt | i medi at e

## 6 bits | 5 bits| 5 bits| 16 bits

## 001111 | 00000 | 11100 | 0001 0000 0000 0001

## LU | O | reg 28| 0x1001

## LU | unused| reg 28| 0x1001

## Load upper inmediate into rt (register target)

## lui gp, 0x1001

The ¢s350- obj dunp program can be used to inspect OS/161 MIPS
ELF file section contentss350- obj dunp -s segnents
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Contents of the Example Program’s. r odat a Section

Contents of section .rodata:
400200 abcddcba 00000000 00000000 00000000 ................
400210 48656¢c6¢c 6f 20576f 726c640a 00000000 Hello World. . ...

## const int z = Oxabcddcba

## |f conpiler doesn't prevent z frombeing witten,
#it then the hardware coul d.

## 0x48 = 'H O0x65 = 'e' 0x0a = '\n’” 0x00 = '\0O’

The. r odat a section contains the “Hello World” string literal and the
constant integer variable.
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Contents of the Example Program’s. dat a Section

Contents of section .data:
10000000 deadbeef 00400210 00000000 00000000 ..... @.........

## Size = 0x10 bytes = 16 bytes (padding for alignnent)
## int x = deadbeef (4 bytes)

## char const *str = "Hello Wrld\n"; (4 bytes)

## address of str = 0x10000004

## value stored in str = 0x00400210.

## NOTE: this is the address of the start

## of the string literal in the .rodata section

The. dat a section contains the initialized global variabgsr andx.
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Contents of the Example Program’s. bss and . sbss Sections

10000000

D x
10000004 D str
10000010 S t3 ## S indicates sbss section
10000014 s t2
10000018 S t1
1000001c S errno
10000020 S _ argv
10000030 B array ## B indicates bss section
10004030 A _end
10008000 A gp

Thetl, t2, andt 3 variables are in the sbss section. The
array variable is in the. bss section. There are no values
for these variables in the ELF file, as they are uninitialized.
The ¢s350- nm program can be used to inspect symbols de-
fined in ELF files:cs350- nm -n <fil ename>, in this case
cs350-nm -n segnents.
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System Call Interface for Virtual Memory Management

e much memory allocation is implicit, e.g.:
— allocation for address space of new process

— implicit stack growth on overflow

e OS may support explicit requests to grow/shrink address space, e.g., Unix
br k system call.

e shared virtual memory (simplified Solaris example):

Create: shm d shnget (key, si ze)
Attach: vaddr shmat (shm d, vaddr)
Detach: shndt (vaddr)

Delete: shntt!| (shm d, | PC.RM D)
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Exploiting Secondary Storage

Goals:
¢ Allow virtual address spaces that are larger than the physical address space.

¢ Allow greater multiprogramming levels by using less of the available
(primary) memory for each process.

Method:

e Allow pages (or segments) from the virtual address space to be stored in
secondary memory, as well as primary memory.

e Move pages (or segments) between secondary and primary memory so that
they are in primary memory when they are needed.
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The Memory Hierarchy

BANDWIDTH (bytes/sec) SIZE (bytes)

L1 Caché 104
L2 Cach% 106

primary

8 9
10 memory 10
secondary
106 memory 1012

(disk)
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Large Virtual Address Spaces

Virtual memory allows for very large virtual address spaces, and very large
virtual address spaces require large page tables.

example:2*® byte virtual address spaceKbyte (23 byte) pagess byte page
table entries means
248
ﬁZQ = 237 bytes per page table
page tables for large address spaces may be very large, and
— they must be in memory, and

— they must be physically contiguous

some solutions:
— multi-level page tables - page the page tables

— inverted page tables
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Two-Level Paging

virtual address (v bits) - R
L -
I
R
page # ‘ page # ‘ offset‘ - T— frame # | offset
L T 77
TIIIT physical address (m bits)

I
—~<— m bits —> level 1 e
page table base page table r -
register S

level 2
page tables
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Inverted Page Tables

e A normal page table maps virtual pages to physical frames. An inverted page
table maps physical frames to virtual pages.

e Other key differences between normal and inverted page tables:
— there is only one inverted page table, not one table per process
— entries in an inverted page table must include a process identifier

e An inverted page table only specifies the location of virtual pages that are

located in memory. Some other mechanism (e.g., regular page tables) must b
used to locate pages that are not in memory.
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Paging Policies

When to Page?:
Demand pagindprings pages into memory when they are used. Alternatively,
the OS can attempt to guess which pages will be usedpegidtchthem.

What to Replace?:
Unless there are unused frames, one page must be replaced for each page th
is loaded into memory. Aeplacement policgpecifies how to determine
which page to replace.

Similar issues arise if (pure) segmentation is used, only the unit of
data transfer is segments rather than pages. Since segments may
vary in size, segmentation also requirgg@ement policywhich
specifies where, in memory, a newly-fetched segment should be
placed.
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Global vs. Local Page Replacement

e When the system’s page reference string is generated by more than one
process, should the replacement policy take this into account?

Global Policy: A global policy is applied to all in-memory pages, regardless
of the process to which each one “belongs”. A page requested by process
X may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to
processes according to some memory allocation policy. A replacement
policy is then applied separately to each process’s allocated space. A pag¢
requested by process X replaces another page that “belongs” to process X
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Paging Mechanism
e A valid bit (V') in each page table entry is used to track which pages are in
(primary) memory, and which are not.
V' = 1: valid entry which can be used for translation
V = 0: invalid entry. If the MMU encounters an invalid page table entry, it
raises gage faultexception.
e To handle a page fault exception, the operating system must:

— Determine which page table entry caused the exception. (In SYS/161, and
in real MIPS processors, MMU puts the offending virtual address into a
register on the CPO co-processor (register 8&0dr/BadVaddr). The
kernel can read that register.

— Ensure that that page is brought into memory.
On return from the exception handler, the instruction that resulted in the page
fault will be retried.

¢ If (pure) segmentation is being used, there will be a valid bit in each segment
table entry to indicate whether the segment is in memory.
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A Simple Replacement Policy: FIFO

¢ the FIFO policy: replace the page that has been in memory the longest

¢ athree-frame example:

Num |1/ 2|3|4|5|6|7|8|9]|10]| 11| 12
Refs|a|b|c|d|a|b|e|a|b| c d e
Framel/ a|a|la|d|d|d|e|e|e| e | e | e
Frame 2 blblalala al c c
Frame 3 clclc|bl|b b d d
Fault?| x | x | X | X | X | X | X X X
CS350 Operating Systems Winter 2012
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Optimal Page Replacement

e There is an optimal page replacement policy for demand paging.

e The OPT policy: replace the page that will not be referenced for the longest
time.

Num|1|2|3(4|5(6|7|8|9]10| 11|12
Refs|a|b|lc|d|a|bjeja|b|lc|d]| e
Framel a|a|a|a|a|ala|ala| Cc | C | C
Frame 2 b|b|b|b{bl/b|b|b]|d|d
Frame 3 c|d|d|d|e|e|e| e | e| e
Fault?| x | x | X | X X X | X

e OPT requires knowledge of the future.
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Other Replacement Policies

e FIFO is simple, but it does not consider:
Frequency of Use: how often a page has been used?
Recency of Use:when was a page last used?
Cleanliness: has the page been changed while it is in memory?

e Theprinciple of localitysuggests that usage ought to be considered in a
replacement decision.

¢ Cleanliness may be worth considering for performance reasons.
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Locality

e Locality is a property of the page reference string. In other words, it is a
property of programs themselves.

e Temporal localitysays that pages that have been used recently are likely to be
used again.

e Spatial localitysays that pages “close” to those that have been used are likely
to be used next.

In practice, page reference strings exhibit strong locality. Why?
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Frequency-based Page Replacement

Counting references to pages can be used as the basis for page replacement
decisions.

Example: LFU (Least Frequently Used)
Replace the page with the smallest reference count.

Any frequency-based policy requires a reference counting mechanism, e.g.,
MMU increments a counter each time an in-memory page is referenced.

Pure frequency-based policies have several potential drawbacks:

— Old references are never forgotten. This can be addressed by periodically
reducing the reference count of every in-memory page.

— Freshly loaded pages have small reference counts and are likely victims -
ignores temporal locality.
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Least Recently Used (LRU) Page Replacement

e LRU is based on the principle of temporal locality: replace the page that has
not been used for the longest time

e To implement LRU, it is necessary to track each page’s recency of use. For
example: maintain a list of in-memory pages, and move a page to the front of
the list when it is used.

¢ Although LRU and variants have many applications, LRU is often considered
to be impractical for use as a replacement policy in virtual memory systems.
Why?

CS350 Operating Systems Winter 2012

83



84

Virtual Memory 57

Least Recently Used: LRU

e the same three-frame example:

Num|1/2|3|4|5|6|7|8|9]|10]| 11| 12
Refs|a|b|c|d|a|b|leja|lb| c|d e
Framel/ a|a|a|d|d|d|e|le|le| c c (o
Frame 2 b|b|la|al|a al ald d
Frame 3 clclc|bl|b b b e
Fault?| x | x | x| x| x| x| X X X X
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The “Use” Bit

e A use bit(or reference bitis a bit found in each TLB entry that:

— is set by the MMU each time the page is used, i.e., each time the MMU
translates a virtual address on that page

— can be read and modified by the operating system
— operating system copies use information into page table

e The use bit provides a small amount of efficiently-maintainable usage
information that can be exploited by a page replacement algorithm.

Entries in the MIPS TLB do not include a use bit.
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What if the MMU Does Not Provide a “Use” Bit?

¢ the kernel can emulate the “use” bit, at the cost of extra exceptions

1. When a page is loaded into memory, mark itraslid (even though it as
been loaded) and set its simulated “use” bit to false.

2. If a program attempts to access the page, an exception will occur.

3. Inits exception handler, the OS sets the page’s simulated “use” bit to
“true” and marks the pagealid so that further accesses do not cause
exceptions.

e This technique requires that the OS maintain extra bits of information for each

page:
1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory
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The Clock Replacement Algorithm

e The clock algorithm (also known as “second chance”) is one of the simplest
algorithms that exploits the use bit.

e Clock is identical to FIFO, except that a page is “skipped” if its use bit is set.

e The clock algorithm can be visualized as a victim pointer that cycles through
the page frames. The pointer moves whenever a replacement is necessary:

while use bit of victimis set

clear use bit of victim

victim= (victim+ 1) % num franes
choose victimfor replacenent
victim= (victim+ 1) % num franes

CS350 Operating Systems Winter 2012
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Page Cleanliness: the “Modified” Bit

e A page ismodified(sometimes called dirty) if it has been changed since it was
loaded into memory.

¢ A modified page is more costly to replace than a clean page. (Why?)

e The MMU identifies modified pages by settingredified bitin the TLB entry
when the contents of the page change.

e Operating system clears the modified bit when it cleans the page

e The modified bit potentially has two roles:
— Indicates which pages need to be cleaned.

— Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.
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What if the MMU Does Not Provide a “Modified” Bit?

e Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark iteed-only(even if it is
actually writeable) and set its simulated “modified” bit to false.

2. If a program attempts to modify the page, a protection exception will
occur.

3. Inits exception handler, if the page is supposed to be writeable, the OS
sets the page’s simulated “modified” bit to “true” and marks the page as
writeable.

e This technique requires that the OS maintain two extra bits of information for
each page:
1. the simulated “modified” bit

2. a“writeable” bit to indicate whether the page is supposed to be writeable
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Enhanced Second Chance Replacement Algorithm

¢ Classify pages according to their use and modified bits:
(0,0): not recently used, clean.
(0,1): not recently used, modified.
(1,0): recently used, clean

(1,1): recently used, modified

e Algorithm:
1. Sweep once looking for (0,0) page. Don't clear use bits while looking.

2. If none found, look for (0,1) page, this time clearing “use” bits for
bypassed frames.

3. If step 2 fails, all use bits will be zero, repeat from step 1
(guaranteed to find a page).
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Page Cleaning

¢ A modified page must be cleaned before it can be replaced, otherwise change
on that page will be lost.

e Cleaninga page means copying the page to secondary storage.
e Cleaning is distinct from replacement.

e Page cleaning may tmynchronou®r asynchronous:

synchronous cleaning: happens at the time the page is replaced, during page
fault handling. Page is first cleaned by copying it to secondary storage.
Then a new page is brought in to replace it.

asynchronous cleaning:happens before a page is replaced, so that page fault
handling can be faster.
— asynchronous cleaning may be implemented by dedicatepaQ&
cleaning threadshat sweep through the in-memory pages cleaning
modified pages that they encounter.
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Belady’s Anomaly

e FIFO replacement, 4 frames

Num|1|2|3[4|5/6|7|8|9]10|11| 12
Refs|a|b|jc|d|a|b|lela|b|c | d]| e
Framell a|a|a|la|a|a|e|e|le|l e | d|d
Frame 2 b|b|{b|b|b|bja|lal| a| a]| e
Frame 3 c|lcjclclic|lc|b|b|b|b
Frame 4 dfd{d|d|d|d| c | c|cC
Fault? | x | x | x | X X | X[ x| X | X | X

e FIFO example on Slide 51 with same reference string had 3 frames and only ¢
faults.

More memory does not necessarily mean fewer page faults.
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Stack Policies

e Let B(m,t) represent the set of pages in a memory of sizat timet under
some given replacement policy, for some given reference string.

e Areplacement policy is calledstack policyif, for all reference strings, ath
and allt:

B(m,t) € B(m+ 1,t)

¢ If a replacement algorithm imposes a total order, independent of memory size
on the pages and it replaces the largest (or smallest) page according to that
order, then it satisfies the definition of a stack policy.

e Examples: LRU is a stack algorithm. FIFO and CLOCK are not stack
algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.
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Prefetching

e Prefetching means moving virtual pages into memory before they are needed
i.e., before a page fault results.

e The goal of prefetching igtency hiding do the work of bringing a page into
memory in advance, not while a process is waiting.

e To prefetch, the operating system must guess which pages will be needed.

e Hazards of prefetching:

— guessing wrong means the work that was done to prefetch the page was
wasted

— guessing wrong means that some other potentially useful page has been
replaced by a page that is not used

e most common form of prefetching is simple sequential prefetching: if a
process uses page prefetch page + 1.

e sequential prefetching exploits spatial locality of reference
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Page Size

the virtual memory page size must be understood by both the kernel and the
MMU

some MMUSs have support for a configurable page size

advantages of larger pages
— smaller page tables

— largerTLB footprint

— more efficient I/O

disadvantages of larger pages
— greater internal fragmentation

— increased chance of paging in unnecessary data

0S/161 on the MIPS uses a 4KB virtual memory page size.
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How Much Physical Memory Does a Process Need?

¢ Principle of locality suggests that some portions of the process’s virtual
address space are more likely to be referenced than others.

¢ A refinement of this principle is theorking set modedf process reference
behaviour.

e According to the working set model, at any given time some portion of a
program’s address space will be heavily used and the remainder will not be.
The heavily used portion of the address space is calleditiking setof the
process.

e The working set of a process may change over time.

e Theresident sebf a process is the set of pages that are located in memory.

According to the working set model, if a process’s resident set in-
cludes its working set, it will rarely page fault.
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Resident Set Sizes (Example)

PID VSZ RSS COVMVAND

805 13940 5956 /usr/bin/ gnonme-session
831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11
838 6964 2292 gnone-snproxy

840 14720 5008 gnone-settings-daenon
848 8412 3888 sawfish

851 34980 7544 nautil us

853 19804 14208 gnone- pane

857 9656 2672 gpilotd

867 4608 1252 gnone- name-service
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Refining the Working Set Model

e DefineWW S(t, A) to be the set of pages referenced by a given process during
the time intervalt — A, t). WS(t, A) is the working set of the process at
timet.

e Define|WS(t, A)| to be the size of¥/ S(t, A), i.e., the number ofiistinct
pages referenced by the process.

e If the operating system could tradk S(¢, A), it could:

— use|WWS(t, A)| to determine the number of frames to allocate to the
process under a local page replacement policy
— useW S(t, A) directly to implement a working-set based page

replacement policy: any page that is no longer in the working set is a
candidate for replacement
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Page Fault Frequency

e A more direct way to allocate memory to processes is to measureptuger
fault frequencies the number of page faults they generate per unit time.

e If a process’s page fault frequency is too high, it needs more memory. Ifitis
low, it may be able to surrender memory.

e The working set model suggests that a page fault frequency plot should have
sharp “knee”.
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A Page Fault Frequency Plot

high
page fault frequency curve
process
page fault
frequency
thresholds
low
few many
frames allocated to process
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Thrashing and Load Control

e What is a good multiprogramming level?
— If too low: resources are idle
— If too high: too few resources per process
e A system that is spending too much time paging is said tthizshing
Thrashing occurs when there are too many processes competing for the
available memory.
e Thrashing can be cured by load shedding, e.g.,
— Killing processes (not nice)

— Suspending answapping ouprocesses (nicer)
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Swapping Out Processes

e Swapping a process out means removing all of its pages from memory, or
marking them so that they will be removed by the normal page replacement
process. Suspending a process ensures that it is not runnable while it is
swapped out.

e Which process(es) to suspend?

— low priority processes
— blocked processes
— large processes (lots of space freed) or small processes (easier to reload)

e There must also be a policy for making suspended processes ready when
system load has decreased.
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Processor Scheduling 1

The Nature of Program Executions

e Arunning thread can be modeled as alternating seri€PdJ burstsand|l/O
bursts

— during a CPU burst, a thread is executing instructions

— during an I/0 burst, a thread is waiting for an 1/0 operation to be
performed and is not executing instructions

CS350 Operating Systems Winter 2012
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Preemptive vs. Non-Preemptive

¢ A non-preemptivescheduler runs only when the running thread gives up the
processor through its own actions, e.g.,

— the thread terminates
— the thread blocks because of an 1/0O or synchronization operation
— the thread performs a Yield system call (if one is provided by the operating
system)
e A preemptivescheduler may, in addition, force a running thread to stop
running

— typically, a preemptive scheduler will be invoked periodically by a timer
interrupt handler, as well as in the circumstances listed above

— arunning thread that is preempted is moved to the ready state
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FCFS and Round-Robin Scheduling

First-Come, First-Served (FCFS):
e non-preemptive - each thread runs until it blocks or terminates
e FIFO ready queue

Round-Robin:
e preemptive version of FCFS

e running thread is preempted after a fixed time quantum, if it has not
already blocked

e preempted thread goes to the end of the FIFO ready queue
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Shortest Job First (SJF) Scheduling

non-preemptive

ready threads are scheduled according to the length of their next CPU burst -
thread with the shortest burst goes first

SJF minimizes average waiting time, but can lead to starvation

SJF requires knowledge of CPU burst lengths

— Simplest approach is to estimate next burst length of each thread based or
previous burst length(s). For example, exponential average considers all
previous burst lengths, but weights recent ones most heavily:

Bi+1 = Oébz‘ + (1 - Oé)BZ

whereB; is the predicted length of theh CPU burst, and; is its actual
length, and) < o < 1.

e Shortest Remaining Time First is a preemptive variant of SJF. Preemption
may occur when a new thread enters the ready queue.
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FCFS Gantt Chart Example

Pel  —

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=2) "arrives" at time 5
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Round Robin Example

Pe| =

Pl e

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=2) "arrives" at time 5 Quantum =2
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SJF Example

POl —

PC—

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=2) "arrives" at time 5
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SRTF Example

Pa| e e
POl e—
PC—

1 I

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=2) "arrives" at time 5
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Highest Response Ratio Next

non-preemptive

response ratio is defined for each ready thread as:

w—+b

b

whereb is the estimated CPU burst time ands the actual waiting time

scheduler chooses the thread with the highest response ratio (choose smalles

bin case of a tie)

HRRN is an example of a heuristic that blends SJF and FCFS
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HRRN Example

Pa

Pb I

Pc —

Pd

> time
4 8 12 16 20

Initial ready queue: Pa=5 Pb=8 Pc=3
Thread Pd (=4) "arrives" at time 5

CS350
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Prioritization

e ascheduler may be asked to take process or thread priorities into account

e for example, priorities could be based on
— user classification
— application classification
— application specification
(e.g., Linuxset priority/sched_set schedul er)
e scheduler can:
— always choose higher priority threads over lower priority threads
— use any scheduling heuristic to schedule threads of equal priority

¢ low priority threads risk starvation. If this is not desired, scheduler must have
a mechanism for elevating the priority of low priority threads that have waited

along time
CS350 Operating Systems Winter 2012
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Multilevel Feedback Queues

e gives priority to interactive threads (those with short CPU bursts)

e scheduler maintains several ready queues

e scheduler never chooses a thread in queatithere are threads in any queue
J <.

e threads in queug¢use quantung;, andg; < g; if i < j

e newly ready threads go into que0e

e alevel: thread that is preempted goes into the levell ready queue
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3 Level Feedback Queue State Diagram

blocked

preempt
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Suspending Processes

e suspension prevents a process from running for an extended period of time,
until the kernel decides t@sumeit.

e usually because a resource, especially memory, is overloaded
e kernel releases suspended process’s resources (e.g., memory)

e operating system may also provide mechanisms for applications or users to
request suspension/resumption of processes
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Scheduling States Including Suspend/Resume

suspended/

suspend ready

resume suspend

guantum expires

running

dispatch

suspend
blocked

suspended/
blocked

resume
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Devices and Device Controllers

network interface

graphics adapter

secondary storage (disks, tape) and storage controllers
serial (e.g., mouse, keyboard)

sound

CO-processors
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Bus Architecture Example

Y S
CPU Cache
- ) )
Y Y
Bridge Memory
)
PCI bus
SCSI USB '
controller controller Graphics
ISA bus

=
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Simplified Bus Architecture

o (] D) D L
[/ N\

disk controller other controllers
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Sys/161 LAMEbus Devices

e LAMEDbus controller

e timer/clock - current time, timer, beep

e disk drive - persistent storage

e serial console - character input/output

e text screen - character-oriented graphics

e network interface - packet input/output

e emulator file system - simulation-specific

e hardware trace control - simulation-specific

e random number generator
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Device Interactions

e device registers
— command, status, and data registers
— CPU accesses register via:
« special /0 instructions
* memory mapping
e interrupts
— used by device for asynchronous notification (e.g., of request completion)
— handled by interrupt handlers in the operating system
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Example: LAMEDbus timer device registers

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry (auto-restart countdown?)
12 4 | status and command interrupt (reading clears)
16 4 | status and command countdown time (microseconds)
20 4 command speaker (causes beeps)

Sys/161 uses memory-mapping. Each device’s registers are
mapped into th@hysical address spaad the MIPS processor.
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Example: LAMEbus disk controller

Offset | Size Type Description
0 4 status number of sectors
4 4 status and commangd status
8 4 command sector number
12 4 status rotational speed (RPM
32768 | 512 data transfer buffer
CS350 Operating Systems Winter 2012
e} 8

MIPS/OS161 Physical Address Space
0x00000000 OXFEFFFfF
RAM

ROM: 0x1fc00000 - Ox1fdfffff
devices: 0x1fe00000 — Ox1fffffff

64 KB device "slot"
0x1fe00000 Ox Lffffff

Each device is assigned to one of 32 64KB device “slots”. A de-
vice’s registers and data buffers are memory-mapped into its as-
signed slot.
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Device Control Example: Controlling the Timer

/* Registers (offsets within the device slot) =*/
#define LT_ REGSEC 0 /= time of day: seconds */
#define LT REGNSEC 4 /= time of day: nanoseconds */

#define LT REGRCE 8 /* Restart On countdown-timer Expiry flag

#define LT REGIRQ 12 /* Interrupt status register =/
#define LT_REG COUNT 16 /+ Time for countdown tiner (usec) =/
#define LT _REG SPKR 20 /* Beep control =/

[+ Get the nunber of seconds fromthe |amebus tinmer */
[+ It->t_buspos is the slot nunber of the target device =*/
secs = bus_read_register(lt->It_bus, |t->It_buspos,

LT REG SEC);

[+ Get the timer to beep. Doesn’t matter what value is sent */
bus wite register(lt->lt_bus, It->It_buspos,
LT_REG SPKR, 440);
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Device Control Example: Address Calculations

/ * LAMEbus mappi ng size per slot =*/

#defi ne LB _SLOT_SI ZE 65536

#define M PS KSEGL 0xa0000000

#defi ne LB_BASEADDR (M PS_KSEGL + 0x1fe00000)

/= Conmpute the virtual address of the specified offset =*/

/* into the specified device slot */

void =

| amebus_nmap_area(struct | anebus_softc *bus, int slot,
uint32 t offset)

{
u_ int32_t address;
(voi d) bus; /'l not needed
assert (sl ot>=0 && sl ot<LB _NSLOTS);
address = LB BASEADDR + slot+*LB SLOT_SI ZE + offset;
return (void *)address;
}
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Device Control Example: Commanding the Device

/+ FROM kern/arch/ m ps/ m ps/|anebus_mps.c */
/* Read 32-bit register froma LAMEbus device. =*/
u.int32t
| amebus_read_regi ster(struct |anmebus_softc =*bus,
int slot, u_int32_t offset)
{
u_int32_t *ptr = | amebus_map_area(bus, slot, offset);
return =ptr;

}

/+ Wite a 32-bit register of a LAMEbus device. =*/

voi d

| amebus _write register(struct |anebus _softc =*bus,
int slot, u_int32_t offset, u_int32_t val)

{
u_int32_t *ptr = | amebus_map_area(bus, slot, offset);
*ptr = val;
}
CS350 Operating Systems Winter 2012
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Device Data Transfer

e Sometimes, a device operation will involve a large chunk of data - much
larger than can be moved with a single instruction. Example: reading a block
of data from a disk.

¢ Devices may have data buffers for such data - but how to get the data betwee
the device and memory?

¢ If the data buffer is memory-mapped, the kernel can move the data iteratively,
one word at a time. This is callggtogram-controlled 1/0

e Program controlled 1/O is simple, but it means that the CPhlsy executing
kernel codewhile the data is being transferred.

e The alternative is called Direct Memory Access (DMA). During a DMA data
transfer, the CPU inot busyand is free to do something else, e.g., run an
application.

Sys/161 LAMEDbus devices do program-controlled 1/O.
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Direct Memory Access (DMA)

e DMA is used for block data transfers between devices (e.g., a disk controller)
and memory

e Under DMA, the CPU initiates the data transfer and is notified when the
transfer is finished. However, the device (not the CPU) controls the transfer
itself.

1 2

@) () (&) (9 ()

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU
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Applications and Devices

e interaction with devices is normally accomplished by device drivers in the OS,
so that the OS can control how the devices are used

e applications see a simplified view of devices through a system call interface
(e.g., block vs. character devices in Unix)
— the OS may provide a system call interface that permits low level
interaction between application programs and a device
e operating system ofteouffersdata that is moving between devices and
application programs’ address spaces
— benefits: solve timing, size mismatch problems

— drawback: performance
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Logical View of a Disk Drive

disk is an array of numbered blocks (or sectors)

each block is the same size (e.g., 512 bytes)

blocks are the unit of transfer between the disk and memory

— typically, one or more contiguous blocks can be transferred in a single
operation

storage ison-volatile i.e., data persists even when the device is without
power
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A Disk Platter’'s Surface
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Physical Structure of a Disk Drive
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Simplified Cost Model for Disk Block Transfer

e moving data to/from a disk involves:
seek time: move the read/write heads to the appropriate cylinder
rotational latency: wait until the desired sectors spin to the read/write heads
transfer time: wait while the desired sectors spin past the read/write heads
e request service time is the sum of seek time, rotational latency, and transfer
time
tservice = tseek + trot + tiransfer

e note that there are other overheads but they are typically small relative to thes
three
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Rotational Latency and Transfer Time

e rotational latency depends on the rotational speed of the disk

e if the disk spins at rotations per second:

1
0 S trot S -
w
e expected rotational latency:
_ 1
trot - %
e transfer time depends on the rotational speed and on the amount of data

transferred

e if k sectors are to be transferred and therelasectors per track:

k

ttransfer = E
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Seek Time

e seek time depends on the speed of the arm on which the read/write heads are
mounted.
e asimple linear seek time model:

— tmazscer 1S the time required to move the read/write heads from the
innermost cylinder to the outermost cylinder

— C'is the total number of cylinders

e if k is the requiredseek distancé: > 0):

k
tseek (k) = atma:pseek

CS350 Operating Systems Winter 2012
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Performance Implications of Disk Characteristics

¢ larger transfers to/from a disk device anere efficienthan smaller ones.
That is, the cost (time) per byte is smaller for larger transfers. (Why?)
e sequential I/O is faster than non-sequential 1/0
— sequential 1/0 operations eliminate the need for (most) seeks

— disks use other techniques, likack buffering to reduce the cost of
sequential I/O even more
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Disk Head Scheduling

goal: reduce seek times by controlling the order in which requests are service

disk head scheduling may be performed by the controller, by the operating
system, or both

for disk head scheduling to be effective, there must be a queue of outstanding
disk requests (otherwise there is nothing to reorder)

an on-line approach is required: the disk request queue is not static
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FCFS Disk Head Scheduling

¢ handle requests in the order in which they arrive

¢ fair and simple, but no optimization of seek times

arrival order: 104183 37 14 65 70
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Shortest Seek Time First (SSTF)

e choose closest request (a greedy approach)

e seek times are reduced, but requests may starve

arrival order: 104 183 37 14 65 70
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SCAN and LOOK

e LOOK is the commonly-implemented variant of SCAN. Also known as the
“elevator” algorithm.

e Under LOOK, the disk head moves in one direction until there are no more
requests in front of it, then reverses direction.

e seek time reduction without starvation

e SCAN is like LOOK, except the read/write heads always move all the way to
the edge of the disk in each direction.
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SCAN Example

arrival order: 104 183 14 65 70
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Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK)

e C-LOOK and C-SCAN are variants of LOOK and SCAN

e Under C-LOOK, the disk head moves in one direction until there are no more
requests in front of it, then it jumps back and begins another scan in the same
direction as the first.

e C-LOOK avoids bias against “edge” cylinders
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C-LOOK Example

arrival order: 104 183 14 65 70
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Files and File Systems

o files: persistent, named data objects
— data consists of a sequence of numbered bytes

— alternatively, a file may have some internal structure, e.g., a file may
consist of sequence of numbered records

— file may change size over time

— file has associated meta-data (attributes), in addition to the file name

* examples: owner, access controls, file type, creation and access
timestamps

e file system: a collection of files which share a common name space

— allows files to be created, destroyed, renamed,
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File Systems 2

File Interface

open, close

— open returns a file identifier (or handle or descriptor), which is used in
subsequent operations to identify the file. (Why is this done?)

read, write

— must specify which file to read, which part of the file to read, and where to

put the data that has been read (similar for write).
— often, file position is implicit (why?)

e seek

get/set file attributes, e.g., Unbxst at, chnod
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File Read
fileoffset (implicit)
vaddr
) ?5(; $ length
&
y -
length 2

virtual address
space

file

read(filel D, vaddr, |ength)

CS350 Operating Systems Winter 2012
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File Position
e may be associated with the file, with a process, or with a file descriptor (Unix

style)

read and write operations
— start from the current file position

— update the current file position

this makes sequential file I/O easy for an application to request

for non-sequential (random) file 1/O, use:

— seek, to adjust file position before reading or writing

— a positioned read or write operation, e.g., Upixead, pwite:
pread(fileld, vaddr,|ength,filePosition)
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Sequential File Reading Example (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDO\LY);
for(i=0; i<100; i++) {
read(f, (void ) buf, 512);

}
cl ose(f);
Read the first 00 x 512 bytes of a file 512 bytes at a time.
CS350 Operating Systems Winter 2012
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File Reading Example Using Seek (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
for(i=1; i<=100; i++) {
| seek(f, (100-i)*512, SEEK SET);
read(f, (void x)buf, 512);
}

cl ose(f);

Read the firstl00 « 512 bytes of a file,512 bytes at a time, in
reverse order.
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File Reading Example Using Positioned Read

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
for(i=0; i<100; i+=2) {
pread(f, (void *)buf,512,i*512);

cl ose(f);

Read every secondl2 byte chunk of a file, untib0 have been

read.
CS350 Operating Systems Winter 2012
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Memory-Mapped Files

e generic interface:

vaddr < mmap(file descriptor,fileoffset,|ength)
munmap( vaddr, | engt h)

e nmmap call returns the virtual address to which the file is mapped

e nmunnmap call unmaps mapped files within the specified virtual address range

Memory-mapping is an alternative to the read/write file interface.
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Memory Mapping lllustration

fileoffset
vaddr

- length

length -

virtual address file
space
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Memory Mapping Update Semantics

¢ what should happen if the virtual memory to which a file has been mapped is
updated?

e some options:
— prohibit updates (read-only mapping)
— eager propagation of the update to the file (too slow!)

— lazy propagation of the update to the file

x user may be able to request propagation (e.g., Rospnc ()
* propagation may be guaranteedriaynmap()

— allow updates, but do not propagate them to the file
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Memory Mapping Concurrency Semantics

¢ what should happen if a memory mapped file is updated?
— by a process that has mmapped the same file

— by a process that is updating the file usingra t e() system call

e options are similar to those on the previous slide. Typically:

— propagate lazily: processes that have mapped thefigeventually see
the changes
— propagate eagerly: other processes will see the changes
« typically implemented by invalidating other process’s page table entries
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File Names

e application-visible objects (e.qg., files, directories) are given names
¢ the file system is responsible for associating names with objects
e the namespace is typically structured, often as a tree or a DAG

e namespace structure provides a way for users and applications to organize ar
manage information

e in a structured namespace, objects may be identifigualynames, which
describe a path from a root object to the object being identified, e.g.:

/ homre/ knsal eni cour ses/ ¢cs350/ notes/fil esys. ps
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Hierarchical Namespace Example

Key
@ = directory
L] =file
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Hard Links

e ahard linkis an association between a name and an underlying file (or
directory)

e typically, when a file is created, a single link is created to the file as well (else
the file would be difficult to use!)

— POSIX examplecr eat ( pat hnane, node) creates both a new empty
file object and a link to that object (usi@t hnane)

e some file systems allow additional hard links to be made to existing files. This
allows more than one name from the file system’s namespace to refer the
same underlying object

— POSIX examplel i nk( ol dpat h, newpat h) creates a new hard link,
usingnewpat h, to the underlying object identified ml dpat h

File systems ensumeferential integrityfor hard links. A hard link
refers to the object it was created for until the link is explicitly
destroyed. (What are the implications of this?)
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Hard Link lllustration

Hard links are a way to creat@on-hierarchical structuran the
namespace. Hard link creation may be restricted to restrict the
kinds of structure that applications can create. Example: no hard
links to directories.
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Unlink Example

link(/y/k/g, /z/m)
unlink(/y/k/g)

Removing thdastlink to a file causes the file itself to be deleted.
Deleting a file that has a link would destroy the referential integrity
of the link.
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Symbolic Links

e aSymbolic link or soft link is an association between two names in the file
namespace. Think of it is a way of defining a synonym for a filename.

— sym i nk( ol dpat h, newpat h) creates a symbolic link from
newpat h to ol dpat h, i.e.,newpat h becomes a synonym for
ol dpat h.

e symbolic links relate filenames to filenames, while hard links relate filenames
to underlying file objects!

e referential integrity isot preserved for symbolic links, e.g., the system call
above can succeed even if there is no object naphetpat h
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Soft Link Example

symlink(/y/k/g, /z/m)

[yl kl g still has only one hard link after theym i nk call.
A new symlink object records the association betwéerd m
and/y/ k/ g. open(/z/m will now have the same effect as
open(/y/k/ Q).
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Soft Link Example with Unlink

"dangling” soft link

symlink(/y/k/g, /z/m)
unlink(/y/k/g)

A file is deleted by thisunlink call. An attempt to
open(/z/ m after theunl i nk will result in an error. If anew
file called/ y/ k/ g is created, a subsequempen(/ z/ m) will
open the new file.
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Linux Link Example (1 of 2)

%cat > filel

This is filel.

%Ils -1li

685844 -rw------ 1 knsal em knsal em 15 2008-08-20 fil el
%In filel |inkl

%In -s filel syml

%ls -li

SITW------ 2 kmsal em knsal em 15 2008-08-20 fil el

685844 -rw------ 2 knsal em knsal em 15 2008-08-20 | i nk1
685845 | rwxrwxrwx 1 knsal em knmsalem 5 2008-08-20 synl -> filel
%cat filel

This is filel.

linkl

This is filel.
% cat symnil
This is filel.

A file, a hard link, a soft link.
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Linux Link Example (2 of 2)

%/binfrmfilel

%ls -1li

685844 -rw------ 1 knmsal em knsal em 15 2008-08-20 |inkl

685845 | rwxrwxrwx 1 knsal em kmsal em 5 2008-08-20 synl -> filel
% cat |inkl

This is filel.

% cat syml

cat: synil: No such file or directory

%cat > filel

This is a brand new filel.

%Ils -1li
685846 -rw------ 1 knsal em knsal em 27 2008-08-20 filel
685844 -rw------ 1 knsal em knsal em 15 2008-08-20 |i nkl

685845 | rwxrwxrwx 1 knsal em knsal em 5 2008-08-20 synl -> filel
% cat |inkl

This is filel.

% cat syml

This is a brand new fil el.

Different behaviour for hard links and soft links.
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Multiple File Systems

e itis not uncommon for a system to have multiple file systems
e some kind of global file namespace is required

e two examples:
DOS/Windows: use two-part file names: file system name, pathname
— example: C:\ knsal eml ¢s350\ schedul e. t xt
Unix: merge file graphs into a single graph
— Unix mount system call does this
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Unix nount Example

"root" file system file system X
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Links and Multiple File Systems

¢ ahard link associates a name in the file system namespace with a file in that
file system

e typically, hard links cannot cross file system boundaries

e for example, even after the mount operation illustrated on the previous slide,
l'ink(/x/alxlg,!zld) would result in an error, because the new link,
which is in the root file system refers to an object in file system X

e soft links do not have this limitation

e for example, after the mount operation illustrated on the previous slide:
—symink(/x/alx/g,!zld) would succeed
— open(/ z/ d) would succeed, with the effect of openihg/ a/ x/ g.

e even ifthesym i nk operation were to occureforethenount command, it
would succeed
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File System Implementation

space management

file indexing (how to locate file data and meta-data)

directories

links

buffering, in-memory data structures

persistence
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Space Allocation and Layout

e space may be allocated in fixed-size chunks, or in chunks of varying size
¢ fixed-size chunks: simple space management, but internal fragmentation

¢ variable-size chunks: external fragmentation

IEEEEENERNEEEEEEE

fixed—size allocation

L | [

variable—size allocation

e layoutmatters! Try to lay a file out sequentially, or in large sequential extents

that can be read and written efficiently.
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File Indexing

e in general, a file will require more than one chunk of allocated space
e this is especially true because files can grow

e how to find all of a file’s data?

chaining:
— each chunk includes a pointer to the next chunk
— OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example
— like chaining, but the chain is kept in an external structure

per-file index: Unix i-node, for example
— for each file, maintain a table of pointers to the file’s blocks or extents
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Chaining
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External Chaining (File Access Table)

v v “~~_  external chain
I I (L N N N P N A O P i
1 ) (file access table)

/
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Per-File Indexing
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Internal File Identifiers

e typically, a file system will assign a unique internal identifier to each file,
directory or other object

e given an identifer, the file system cdirectly locate a record containing key
information about the file, such as:

— the per-file index to the file data (if per-file indexing is used), or the
location of the file's first data block (if chaining is used)

— file meta-data (or a reference to the meta-data), such as
« file owner

file access permissions

file acesss timestamps

file type

*

*

*

o for example, a file identifier might be a number which indexes an on-disk
array of file records
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Example: Unix i-nodes

e ani-node is a record describing a file

e each i-node is uniquely identified by an i-number, which determines its
physical location on the disk
e an i-node is dixed sizeecord containing:

file attribute values
— file type
— file owner and group
— access controls
— creation, reference and update timestamps
— file size
direct block pointers: approximately 10 of these
single indirect block pointer
double indirect block pointer

triple indirect block pointer

CS350 Operating Systems Winter 2012
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i-node Diagram

i-node (not to scale!) data blocks

attribute values

direct
direct

single indirect

I

triple indirect

indirect blocks
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Directories

e A directory consists of a set of entries, where each entry is a record that
includes:

— afile name (component of a path name)
— the internal file identifier (e.g., i-number) of the file

e A directory can be implemented as a special type of file. The directory entries
are the contents of the file.

e The file system should not allow directory files to be directly written by
application programs. Instead, the directory is updated by the file system as
files are created and destroyed
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Implementing Hard Links

¢ hard links are simply directory entries

e for example, consider:
link(/ylklg,/z/m

e to implement this:
1. find out the internal file identifier fary/ k/ g

2. create a new entry in directofy
— file name in new entry im
— file identifier (i-number) in the new entry is the one discovered in step 1
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Implementing Soft Links

e soft links can be implemented as a special type of file

e for example, consider:
symink(/y/klg,/zlm
e to implement this:
— create a newgymlinkfile

— add a new entry in directorlyz

x file name in new entry im
x I-number in the new entry is the i-number of the new symlink file

— store the pathname string “/y/k/g” as the contents of the new symlink file

e change the behaviour of tlepen system call so that when the symlink file is
encountered duringpen(/ z/ m) , the file/ y/ k/ g will be opened instead.
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Main Memory Data Structures

Primary Memory (volatile)

per process system open file table block buffer cache
open file tables \\ (cached copies of blocks)
0 ——
! a
2
= I =
. — | == §
1 [o— —
3 cached i-nodes -

I g1
= B E 1= g

data blocks, index blocks, i-nodes, etc.

Secondary Memory (persistent)
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Problems Caused by Failures

e asingle logical file system operation may require several disk I/O operations

e example: deleting a file
— remove entry from directory
— remove file index (i-node) from i-node table
— mark file’s data blocks free in free space index

e what if, because of a failure, some but not all of these changes are reflected o
the disk?
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Fault Tolerance

e special-purpose consistency checkers (e.g., sk in Berkeley FFS,
Linux ext2)

— runs after a crash, before normal operations resume

— find and attempt to repair inconsistent file system data structures, e.qg.:
« file with no directory entry
x free space that is not marked as free

e journaling (e.g., Veritas, NTFS, Linux ext3)

— record file system meta-data changes in a journal (log), so that sequences
of changes can be written to disk in a single operation

— afterchanges have been journaled, update the disk data structures
(write-ahead logginy

— after a failure, redo journaled updates in case they were not done before
the failure
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Interprocess Communication Mechanisms

e shared storage

— These mechanisms have already been covered. examples:
« shared virtual memory
« Shared files

— processes must agree on a name (e.g., a file name, or a shared virtual
memory key) in order to establish communication

e message based

— signals
— sockets
— pipes
CS350 Operating Systems Winter 2012
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Message Passing
Indirect Message Passing
. operating system .
sender receiver
send . . receive
( operating systemw
sender = receiver
send L . J receive

Direct Message Passing

If message passing is indirect, the message passing system must
have some capacity to buffer (store) messages.
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Properties of Message Passing Mechanisms

Addressing: how to identify where a message should go

Directionality:

e simplex (one-way)

e duplex (two-way)

¢ half-duplex (two-way, but only one way at a time)
Message Boundaries:

datagram model: message boundaries

stream model: no boundaries
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Properties of Message Passing Mechanisms (cont'd)

Connections: need to connect before communicating?

e in connection-oriented models, recipient is specified at time of connection,
not by individual send operations. All messages sent over a connection
have the same recipient.

e in connectionless models, recipient is specified as a parameter to each ser
operation.
Reliability:
e can messages get lost?
e can messages get reordered?

e can messages get damaged?
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Sockets

e asocket is a communicati@nd-point

e if two processes are to communicate, each process must create its own socke

e two common types of sockets

stream sockets: support connection-oriented, reliable, duplex
communication under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex
communication under the datagram model (message boundaries)
e both types of sockets also support a variety of address domains, e.g.,

Unix domain: useful for communication between processes running on the
same machine

INET domain: useful for communication between process running on
different machines that can communicate using IP protocols.
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Using Datagram Sockets (Receiver)

s = socket (addressType, SOCK DGRAM ;
bi nd(s, addr ess) ;
recvfron(s, buf, buf Lengt h, sour ceAddr ess) ;

;:‘I.ose(s);

socket creates a socket

bi nd assigns an address to the socket

r ecvf r omreceives a message from the socket
— buf is a buffer to hold the incoming message

— sour ceAddr ess is a buffer to hold the address of the message sender

bothbuf andsour ceAddr ess are filled by the ecvf r omcall
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Using Datagram Sockets (Sender)

s = socket (addressType, SOCK _DGRAM) ;
sendt o( s, buf, negLengt h, t ar get Addr ess)

&'I'ose(s);

e socket creates a socket

e sendt o sends a message using the socket
— buf is a buffer that contains the message to be sent
— nmsglLengt h indicates the length of the message in the buffer

— tar get Addr ess is the address of the socket to which the message is to
be delivered
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More on Datagram Sockets

e sendt o andr ecvf r omcallsmayblock

— recvf r omblocks if there are no messages to be received from the
specified socket

— sendt o blocks if the system has no more room to buffer undelivered
messages
e datagram socket communications are (in general) unreliable
— messages (datagrams) may be lost

— messages may be reordered

e The sending process must know the address of the receive process’s socket.

How does it know this?
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A Socket Address Convention

Servi ce Por t Descri ption

echo 7/ udp

syst at 11/tcp

net st at 15/tcp

char gen 19/ udp

ftp 21/ tcp

ssh 22/ tcp # SSH Renote Logi n Protocol

t el net 23/ tcp

sntp 25/ tcp

tinme 37/ udp

gopher 70/ tcp # Internet CGopher

finger 79/ tcp

VWY 80/tcp # Wor | dW deWeb HTTP

pop2 109/tcp # POP version 2

i map2 143/ tcp # | VAP
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Using Stream Sockets (Passive Process)

s = socket (addressType, SOCK STREAM;
bi nd( s, addr ess) ;

listen(s, backl og);

ns = accept (s, sourceAddr ess);
recv(ns, buf, buf Lengt h) ;

send( ns, buf, buf Lengt h) ;

close(ns); // close accepted connection
close(s); [// don’'t accept nore connections

e | i st en specifies the number of connection requests for this socket that will
be queued by the kernel

e accept accepts a connection request and creates a new sosiet (
e recv receives up tiouf Lengt h bytes of data from the connection

e send sendshuf Lengt h bytes of data over the connection.
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Notes on Using Stream Sockets (Passive Process)

e accept creates a new sockatg) for the new connection

e sour ceAddr ess is an address buffeaccept fills it with the address of
the socket that has made the connection request

¢ additional connection requests can be accepted using acarept calls on
the original sockety)

e accept blocks if there are no pending connection requests

e connection is duplex (bothend andr ecv can be used)
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Using Stream Sockets (Active Process)

s = socket (addressType, SOCK STREAM;
connect (s, t arget Addr ess) ;

send( s, buf, buf Lengt h) ;

recv(s, buf, buf Lengt h) ;

;:.Ihose(s);

e connect sends a connection request to the socket with the specified address

— connect blocks until the connection request has been accepted

e active process may (optionally) bind an address to the socket (bsimd)
before connecting. This is the address that will be returned batloe pt
call in the passive process

e if the active process does not choose an address, the system will choose one
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Illustration of Stream Socket Connections
y queue of connection request:
s 111 s
s2
s3
socket
process 1 process 2
(active) (passive)
process 3
(active)
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Pipes

e pipes are communication objects (not end-points)
e pipes use the stream model and are connection-oriented and reliable
e some pipes are simplex, some are duplex

e pipes use an implicit addressing mechanism that limits their use to
communication betweerlatedprocesses, typically a child process and its
parent

e api pe() system call creates a pipe and returns two descriptors, one for eack
end of the pipe
— for a simplex pipe, one descriptor is for reading, the other is for writing

— for a duplex pipe, both descriptors can be used for reading and writing
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One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char n[] = "nessage for parent”;

char y[100];

pi pe(fd); // create pipe

pid = fork(); // create child process

if (pid ==20) {
/1 child executes this
close(fd[0]); // close read end of pipe
wite(fd[ 1], m 19);

} else {
/'l parent executes this
close(fd[1]); // close wite end of pipe
read(fd[0],y, 100);
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lllustration of Example (after pi pe())

parent process
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lllustration of Example (after f ork())
parent process child process
CS350 Operating Systems Winter 2012
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lllustration of Example (after cl ose())
parent process child process
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Examples of Other Interprocess Communication Mechanisms

named pipe:

e similar to pipes, but with an associated name (usually a file name)

e name allows arbitrary processes to communicate by opening the same
named pipe

e must be explicitly deleted, unlike an unnamed pipe

message queue:

¢ like a named pipe, except that there are message boundaries

e nsgsend call sends a message into the quetsgr ecv call receives the
next message from the queue
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Signals

signals permit asynchronous one-way communication
— from a process to another process, or to a group of processes, via the kern

— from the kernel to a process, or to a group of processes
there are many types of signals

the arrival of a signal may cause the execution sigmal handlerin the
receiving process

there may be a different handler for each type of signal
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Examples of Signal Types

Si gnal Val ue Acti on Coment
SI G NT 2 Term Interrupt from keyboard
SIALL 4 Core Il1legal Instruction
SI &I LL 9 Term Kill signal
SIGCHLD 20, 17, 18 I gn Chil d stopped or term nated
SI GBBUS 10,7, 10 Core Bus error

SI GXCPU 24, 24, 30 Core CPUtinme limt exceeded
SI GSTOP 17,19, 23 St op Stop process
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Signal Handling

operating system determines default signal handling for each new process

example default actions:
— ignore (do nothing)
— Kkill (terminate the process)

— stop (block the process)

a running process can change the default for some types of signals

signal-related system calls
— calls to set non-default signal handlers, e.g., Wslixgnal , si gacti on

— calls to send signals, e.g., Unx | |
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Implementing IPC

e application processes use descriptors (identifiers) provided by the kernel to
refer to specific sockets and pipes, as well as files and other objects

e kerneldescriptor tablegor other similar mechanism) are used to associate
descriptors with kernel data structures that implement IPC objects

e kernel provides bounded buffer space for data that has been sent using an IP
mechanism, but that has not yet been received
— for IPC objects, like pipes, buffering is usually on a per object basis

— IPC end points, like sockets, buffering is associated with each endpoint

I~ -

system call > b - system call
uffer
interface \1 k interface

operating system
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Network Interprocess Communication
e some sockets can be used to connect processes that are running on different
machines

e the kernel:
— controls access to network interfaces

— multiplexes socket connections across the network

| I
| / \ |
| ’ N |
| |

p / operating
network interface| SYSteM

operating\ N
system

ngtwork interface

(\Letmiorkj
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Networking Reference Models

e |ISO/OSI Reference

Model
7 | Application Layer | ™M
B layer N+1 protocol
6 Pl’esentatlon Layer' Layer N+l fme - - ---ommmm oo >| Layer N+1
5 Sess'on La.yer layer N service
layer N protocol
4 Transport Layer LayerN [=<-------------moomooos > LayerN
3 Network Layer T T
2 | Data Link Layer l l
1 PhySIcaI Layer layer 1 protocol
Layer 1 Layer 1
e Internet Model
— layers 1-4 and 7
CS350 Operating Systems Winter 2012
Interprocess Communication 26

Internet Protocol (IP): Layer 3

e every machine has one (or more) IP address, in addition to its data link layer
address(es)

e In IPv4, addresses are 32 bits, and are commonly written using “dot” notation,
e.g.:
— cpu06.student.cs 129.97.152.106
— www.google.ca= 216.239.37.99 or 216.239.51.104 or ...

¢ IP moves packets (datagrams) from one machine to another machine

¢ principal function of IP igouting: determining the network path that a packet
should take to reach its destination

¢ |P packet delivery is “best effort” (unreliable)
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IP Routing Table Example

e Routing table for zonker.uwaterloo.ca, which is on three networks, and has IP
addresses 129.97.74.66, 172.16.162.1, and 192.168.148.1 (one per network)

Destination Gateway | Interface

172.16.162.* - vmnetl
129.97.74.* - eth0
192.168.148.* - vmnet8

default 129.97.74.1 ethO

e routing table key:
destination: ultimate destination of packet

gateway: next hop towards destination (or “-” if destination is directly
reachable)

interface: which network interface to use to send this packet
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Internet Transport Protocols

TCP: transport control protocol
e connection-oriented

reliable

stream

e congestion control
e used to implement INET domain stream sockets
UDP: user datagram protocol

e connectionless

unreliable

datagram

no congestion control

used to implement INET domain datagram sockets
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TCP and UDP Ports

e since there can be many TCP or UDP communications end points (sockets) o
a single machine, there must be a way to distinguish among them

e each TCP or UDP address can be thought of as having two parts:

(machine name, port number)

e The machine name is the IP address of a machine, and the port number serve
to distinguish among the end points on that machine.

e INET domain socket addresses are TCP or UDP addresses (depending on
whether the socket is a stream socket or a datagram socket).

CS350 Operating Systems Winter 2012

Interprocess Communication 30

Example of Network Layers

Application Application
Process Process

Transport Transport
e S e e i >

Instance Instance

Network Network Network Network

Instance Instance Instance Instance

Datg Link Data Link Data Link Datg Link

Instance Instance Instance Instance

g~ 3

gateways
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Network Packets (UDP Example)

application message

UDP payload

UDP header

application message

—<

IP payload
S

IP Header

UDP heade

r application message

Data Link Payload

IP Header

Data Link Header

UDP header

application message
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BSD Unix Networking Layers
process
system calls
socket layer
socket queues
protocol layer A
(TCP,UDP,IP,...) !
/ |
interface
queues % % % (IP) protocol queue
interface layer
(ethernet,PPP,loopback,...)
network network network
device device device
Operating Systems Winter 2012
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