Threads and Concurrency 1

Threads and Concurrency

key concepts
threads, concurrent execution, timesharing, contexcewihterrupts, preemption

reading
Three Easy Pieces: Chapter 26 (Concurrency and Threads)

CS350 Operating Systems Winter 2017

Threads and Concurrency 2

What is a Thread?

e Threads provide a way for programmers to expGeEsgurrency in a program.
e A normalsequential program consists of a single thread of execution.

¢ In threaded concurrent programs there are multiple threbesecution, all
occuring at the same time.

CS350 Operating Systems Winter 2017

Threads and Concurrency 3

0S/161 Threaded Concurrency Examples

e Key ideas from the examples:
— Athread can create new threads usig ead_f or k

— New theads start execution in a function specified as a paearae
t hread_fork

— The original thread (which calledhr ead_f or k and the new thread
(which is created by the call tohr ead_f or k) proceed concurrently, as
two simultaneous sequential threads of execution.

— All threadsshare access to the program’s global variables and heap.

— Each thread’s function activations gmevate to that thread.

CS350 Operating Systems Winter 2017

Threads and Concurrency 4

0S/161's Thread Interface

e create a new thread:
int thread_fork(

const char *nane, /'l name of new thread

struct proc =*proc, /1l thread s process

void (*func) /'l new thread s function
(void *, unsigned |ong),

voi d xdat al, /1l function’s first param
unsi gned | ong dat a2 /1l function’s second param

);
¢ terminate the calling thread:
void thread_exit(void);
¢ volutarily yield execution:
void thread yield(void);

Seekern/i ncl ude/thread. h

CS350 Operating Systems Winter 2017

Threads and Concurrency

Why Threads?

e Reason #1 parallelism exposed by threads enables parallel exaciitibe
underlying hardware supports it.

— programs can run faster

e Reason #2 parallelism exposed by threads enables better proceskzation

— if one thread has tblock, another may be able to run

CS350 Operating Systems Winter 2017
Threads and Concurrency 6
Review: Sequential Program Execution
stack data code memory
| | | | | | CPU register contents
SP PC
The Fetch/Execute Cycle
1. fetch instruction PC points to
2. decode and execute instruction
3. advance PC
CS350 Operating Systems Winter 2017

Threads and Concurrency

MIPS Registers

num | name| use num | name | use
0 z0 | always zero 24-25| t8-19 | temps (caller-save)
1 at assembler reservefl 26-27 | kO-k1 | kernel temps
2 vO | returnval/syscall #| 28 gp | global pointer
3 vl | returnvalue 29 sp | stack pointer
4-7 | a0-a3| subroutine args 30 s8/fp | frame ptr (callee-save
8-15 | tO0-t7 | temps (caller-save) 31 ra return addr (for jal)
16-23 | sO-s7 | saved (callee-save

Seekern/ arch/ m ps/incl ude/ kern/regdefs. h

CS350 Operating Systems Winter 2017
Threads and Concurrency 8
Review: The Stack
- O FuncA() {
stack frame(s)
-] FuncB() ;
}
FuncB() {
FuncB T
FuncC();
FuncC .
}
stack growth l
CS350 Operating Systems Winter 2017

Threads and Concurrency 9

Concurrent Program Execution (Two Threads)

SP PC

| | | | | | | | Thread 2 CPU register contents
I

A

T1 T2 data code memory

stack stack ~3

| | | | | |ThreadlcPU register contents
sP PC

Conceptually, each thread executes sequentially usipgvste register con-
tents and stack.

CS350 Operating Systems Winter 2017

Threads and Concurrency 10

Implementing Concurrent Threads

e Option 1: multiple processors, multiple cores, hardwardtithueading per core

— P processorsy' cores per processal/ multhreading degree per cose
PC'M threads can execusamultaneously

— separate register set for each running thread, to hotstatsition context
e Option 2:timesharing
— multiple threads take turns on the same hardware

— rapidly switch from thread to thread so that all make progires

In practice, both techniques can be combined.

CS350 Operating Systems Winter 2017

Threads and Concurrency 11

Timesharing and Context Switches

e When timesharing, the switch from one thread to anotherlisdca context
switch
e What happens during a context switch:
1. decide which thread will run next (scheduling)
2. save register contents of current thread
3. load register contents of next thread

e Thread context must be saved/restored carefully, sineathexecution
continuously changes the context

CS350 Operating Systems Winter 2017

Threads and Concurrency 12

Context Switch on the MIPS (1 of 2)
[+ See kern/arch/m ps/thread/switch.S */

swi tchfranme_swi tch:
[+ a0: address of switchframe pointer of old thread. =/
/+* al: address of switchframe pointer of new thread. =/

/+* Allocate stack space for saving 10 registers. 10«4 = 40 =/
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)
sw s8, 28(sp)
sSW s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0O(sp)

[+ Store the old stack pointer in the old thread =/
sw sp, 0(a0)

CS350 Operating Systems Winter 2017

Threads and Concurrency 13
Context Switch on the MIPS (2 of 2)
/+* Get the new stack pointer fromthe new thread */
lw sp, 0(al)
nop /+ delay slot for load */
[+ Now, restore the registers */
lw s0, 0(sp)
lw sl1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /+ delay slot for load */
[+ and return. =/
j ra
addi sp, sp, 40 /+ in delay slot */
.end switchfrane_sw tch
CS350 Operating Systems Winter 2017
Threads and Concurrency 14
What Causes Context Switches?
¢ the running thread calkhread_yield
— running threadroluntarily allows other threads to run
e the running thread calkhread_exit
— running thread is terminated
¢ the running threatlocks, via a call towchan_sleep
— more on this later. .
¢ the running thread ipreempted
— running threadnvoluntarily stops running
CS350 Operating Systems Winter 2017

Threads and Concurrency 15
0S/161 Thread Stack after Voluntary Context Switch ¢ hr ead_yi el d())
stack frame(s)
stack growth
thread_yield()
stack frame
thread_switch
stack frame
saved thread context
(switchframe)

CS350 Operating Systems Winter 2017
Threads and Concurrency 16
Thread States

preemption
or thread_yield()
dispatch
got resource or event need resource or event
(wchan_wakeone/all() (wehan_sleep())

blocked
running: currently executing
ready: ready to execute
blocked: waiting for something, so not ready to execute.
CS350 Operating Systems Winter 2017

Threads and Concurrency 17

Preemption
e without preemption, a running thread could potentially fowrever, without
yielding, blocking, or exiting

e preemption means forcing a running thread to stop running, so that @noth
thread can have a chance

e to implement preemption, the thread library must have a seéfgetting
control” (causing thread library code to be executed) elilengh the running
thread has not called a thread library function

e this is normally accomplished usimgterrupts

CS350 Operating Systems Winter 2017

Threads and Concurrency 18

Review: Interrupts

e an interrupt is an event that occurs during the executionprbgram

e interrupts are caused by system devices (hardware), gigeg a disk
controller, a network interface

e when an interrupt occurs, the hardware automatically temagontrol to a fixed
location in memory

¢ at that memory location, the thread library places a proeedalled an
interrupt handler

e the interrupt handler normally:
1. create drap frameto record thread context at the time of the interrupt

2. determines which device caused the interrupt and pesfdewice-specific
processing

3. restores the saved thread context from the trap frameemuotines execution
of the thread

CS350 Operating Systems Winter 2017

Threads and Concurrency 19

0OS/161 Thread Stack after in Interrupt

stack growth

trap frame

interrupt handling

stack frame(s)

CS350 Operating Systems Winter 2017

Threads and Concurrency 20

Preemptive Scheduling

A preemptive scheduler imposes a limit, called sbieeduling quantum on how
long a thread can run before being preempted.

e The quantum is aopper bound on the amount of time that a thread can run. It
may block or yield before its quantum has expired.

e Periodic timer interrupts allow running time to be tracked.

e If athread has run too long, the timer interrupt handler pnats the thread by
callingt hr ead_yi el d.

e The preempted thread changes state from running to readlyt igrplaced on
theready queue.

0S/161 threads ug@eemptive round-robin scheduling.

CS350 Operating Systems Winter 2017

Threads and Concurrency

21

0OS/161 Thread Stack after Preemption

stack frame(s)

stack growth

trap frame

ir]terrqpt handling
stack frame(s)
thread_yield
stack Tr)émeo

thread_switch()
stack frame

saved thread context
(switchframe)

CS350 Operating Systems Winter 2017
Threads and Concurrency 22
Two-Thread Example (Part 1)
Thread 1 Stack Thread 2 Stack
program program
| _stack frame(s) _ | | stack frame(s)
thread_yield
thread_switch
switch frame
Thread 1 is running, thread two had previously yielded vtality.
Winter 2017

CS350

Operating Systems

Threads and Concurrency

23

Two-Thread Example (Part 2)

Thread 1 Stack Thread 2 Stack
program program
| _stack frame(s) _ | | stack frame(s)
INTERRUPT!
trap frame thread_yield
interrupt handler thread_switch
switch frame

A time interrupt occurs! Interrupt handler runs.

CS350 Operating Systems Winter 2017
Threads and Concurrency 24
Two-Thread Example (Part 3)
Thread 1 Stack Thread 2 Stack
program program
| _stack frame(s) _ | | stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
thread_yield switch frame
Interrupt handler decides Thread 1 quantum has expired.
Winter 2017

CS350 Operating Systems

Threads and Concurrency 25
Two-Thread Example (Part 4)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
thread_yield switch frame
thread_switch
switch frame
Scheduler chooses Thread 2 to run. Context switch.

CS350 Operating Systems Winter 2017
Threads and Concurrency 26
Two-Thread Example (Part 5)

Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler
thread_yield
thread_switch
switch frame
Thread 2 context is restored.
CS350 Operating Systems Winter 2017

Threads and Concurrency 27
Two-Thread Example (Part 6)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame
interrupt handler
thread_yield
thread_switch
switch frame
t hr ead_yi el d finishes, Thread 2 program resumes.

CS350 Operating Systems Winter 2017
Threads and Concurrency 28
Two-Thread Example (Part 7)

Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
thread_yield switch frame
thread_switch
switch frame
Later, Thread 2 yields again. Scheduler chooses Thread 1.
CS350 Operating Systems Winter 2017

Threads and Concurrency 29
Two-Thread Example (Part 8)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
switch frame
Thread 1 context is restored, interrupt handler resumes.
CS350 Operating Systems Winter 2017
Threads and Concurrency 30
Two-Thread Example (Part 9)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
thread_yield
thread_switch
switch frame
Interrupt handler restores state from trap frame and return
CS350 Operating Systems Winter 2017

