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Threads and Concurrency

key concepts
threads, concurrent execution, timesharing, contexcewihterrupts, preemption

reading
Three Easy Pieces: Chapter 26 (Concurrency and Threads)

CS350 Operating Systems Winter 2017

Threads and Concurrency 2

What is a Thread?

e Threads provide a way for programmers to expGeEsgurrency in a program.
e A normalsequential program consists of a single thread of execution.

¢ In threaded concurrent programs there are multiple threbesecution, all
occuring at the same time.

CS350 Operating Systems Winter 2017




Threads and Concurrency 3

0S/161 Threaded Concurrency Examples

e Key ideas from the examples:
— Athread can create new threads usig ead_f or k

— New theads start execution in a function specified as a paearae
t hread_fork

— The original thread (which calledhr ead_f or k and the new thread
(which is created by the call tohr ead_f or k) proceed concurrently, as
two simultaneous sequential threads of execution.

— All threadsshare access to the program’s global variables and heap.

— Each thread’s function activations gmevate to that thread.
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0S/161's Thread Interface

e create a new thread:
int thread_fork(

const char *nane, /'l name of new thread

struct proc =*proc, /1l thread s process

void (*func) /'l new thread s function
(void *, unsigned |ong),

voi d xdat al, /1l function’s first param
unsi gned | ong dat a2 /1l function’s second param

);
¢ terminate the calling thread:
void thread_exit(void);
¢ volutarily yield execution:
void thread yield(void);

Seekern/i ncl ude/thread. h
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Why Threads?

e Reason #1 parallelism exposed by threads enables parallel exaciitibe
underlying hardware supports it.

— programs can run faster

e Reason #2 parallelism exposed by threads enables better proceskzation

— if one thread has tblock, another may be able to run
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Review: Sequential Program Execution
stack data code memory
| | | | | | CPU register contents
SP PC
The Fetch/Execute Cycle
1. fetch instruction PC points to
2. decode and execute instruction
3. advance PC
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MIPS Registers

num | name| use num | name | use
0 z0 | always zero 24-25| t8-19 | temps (caller-save)
1 at assembler reservefl 26-27 | kO-k1 | kernel temps
2 vO | returnval/syscall #| 28 gp | global pointer
3 vl | returnvalue 29 sp | stack pointer
4-7 | a0-a3| subroutine args 30 s8/fp | frame ptr (callee-save
8-15 | tO0-t7 | temps (caller-save) 31 ra return addr (for jal)
16-23 | sO-s7 | saved (callee-save

Seekern/ arch/ m ps/incl ude/ kern/regdefs. h
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Review: The Stack
- O FuncA() {
stack frame(s)
- ] FuncB() ;
}
FuncB() {
FuncB T
FuncC();
FuncC .
}
stack growth l
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Concurrent Program Execution (Two Threads)

SP PC

| | | | | | | | Thread 2 CPU register contents
I

A

T1 T2 data code memory

stack stack ~3

| | | | | |ThreadlcPU register contents
sP PC

Conceptually, each thread executes sequentially usipgvste register con-
tents and stack.
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Implementing Concurrent Threads

e Option 1: multiple processors, multiple cores, hardwardtithueading per core

— P processorsy' cores per processal/ multhreading degree per cose
PC'M threads can execusamultaneously

— separate register set for each running thread, to hotstatsition context
e Option 2:timesharing
— multiple threads take turns on the same hardware

— rapidly switch from thread to thread so that all make progires

In practice, both techniques can be combined.
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Timesharing and Context Switches

e When timesharing, the switch from one thread to anotherlisdca context
switch
e What happens during a context switch:
1. decide which thread will run next (scheduling)
2. save register contents of current thread
3. load register contents of next thread

e Thread context must be saved/restored carefully, sineathexecution
continuously changes the context
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Context Switch on the MIPS (1 of 2)
[+ See kern/arch/m ps/thread/switch.S */

swi tchfranme_swi tch:
[+ a0: address of switchframe pointer of old thread. =/
/+* al: address of switchframe pointer of new thread. =/

/+* Allocate stack space for saving 10 registers. 10«4 = 40 =/
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw  gp, 32(sp)
sw  s8, 28(sp)
sSW  s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0O(sp)

[+ Store the old stack pointer in the old thread =/
sw sp, 0(a0)
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Context Switch on the MIPS (2 of 2)
/+* Get the new stack pointer fromthe new thread */
lw sp, 0(al)
nop /+ delay slot for load */
[+ Now, restore the registers */
lw s0, 0(sp)
lw sl1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /+ delay slot for load */
[+ and return. =/
j ra
addi sp, sp, 40 /+ in delay slot */
.end switchfrane_sw tch
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What Causes Context Switches?
¢ the running thread calkhread_yield
— running threadroluntarily allows other threads to run
e the running thread calkhread_exit
— running thread is terminated
¢ the running threatlocks, via a call towchan_sleep
— more on this later. .
¢ the running thread ipreempted
— running threadnvoluntarily stops running
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0S/161 Thread Stack after Voluntary Context Switch ¢ hr ead_yi el d())
stack frame(s)
stack growth
thread_yield()
stack frame
thread_switch
stack frame
saved thread context
(switchframe)
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Thread States

preemption
or thread_yield()
dispatch
got resource or event need resource or event
(wchan_wakeone/all() (wehan_sleep())

blocked
running: currently executing
ready: ready to execute
blocked: waiting for something, so not ready to execute.
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Preemption
e without preemption, a running thread could potentially fowrever, without
yielding, blocking, or exiting

e preemption means forcing a running thread to stop running, so that @noth
thread can have a chance

e to implement preemption, the thread library must have a seéfgetting
control” (causing thread library code to be executed) elilengh the running
thread has not called a thread library function

e this is normally accomplished usimgterrupts
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Review: Interrupts

e an interrupt is an event that occurs during the executionprbgram

e interrupts are caused by system devices (hardware), gigeg a disk
controller, a network interface

e when an interrupt occurs, the hardware automatically temagontrol to a fixed
location in memory

¢ at that memory location, the thread library places a proeedalled an
interrupt handler

e the interrupt handler normally:
1. create drap frameto record thread context at the time of the interrupt

2. determines which device caused the interrupt and pesfdewice-specific
processing

3. restores the saved thread context from the trap frameemuotines execution
of the thread
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0OS/161 Thread Stack after in Interrupt

stack growth

trap frame

interrupt handling

stack frame(s)
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Preemptive Scheduling

A preemptive scheduler imposes a limit, called sbieeduling quantum on how
long a thread can run before being preempted.

e The quantum is aopper bound on the amount of time that a thread can run. It
may block or yield before its quantum has expired.

e Periodic timer interrupts allow running time to be tracked.

e If athread has run too long, the timer interrupt handler pnats the thread by
callingt hr ead_yi el d.

e The preempted thread changes state from running to readlyt igrplaced on
theready queue.

0S/161 threads ug@eemptive round-robin scheduling.
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0OS/161 Thread Stack after Preemption

stack frame(s)

stack growth

trap frame

ir]terrqpt handling
stack frame(s)
thread_yield
stack Tr)émeo

thread_switch()
stack frame

saved thread context
(switchframe)
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Two-Thread Example (Part 1)
Thread 1 Stack Thread 2 Stack
program program
| _stack frame(s) _ | | stack frame(s)
thread_yield
thread_switch
switch frame
Thread 1 is running, thread two had previously yielded vtality.
Winter 2017
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Two-Thread Example (Part 2)

Thread 1 Stack Thread 2 Stack
program program
| _stack frame(s) _ | | stack frame(s)
INTERRUPT!
trap frame thread_yield
interrupt handler thread_switch
switch frame

A time interrupt occurs! Interrupt handler runs.
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Two-Thread Example (Part 3)
Thread 1 Stack Thread 2 Stack
program program
| _stack frame(s) _ | | stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
thread_yield switch frame
Interrupt handler decides Thread 1 quantum has expired.
Winter 2017
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Two-Thread Example (Part 4)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
thread_yield switch frame
thread_switch
switch frame
Scheduler chooses Thread 2 to run. Context switch.
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Two-Thread Example (Part 5)

Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler
thread_yield
thread_switch
switch frame
Thread 2 context is restored.
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Two-Thread Example (Part 6)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame
interrupt handler
thread_yield
thread_switch
switch frame
t hr ead_yi el d finishes, Thread 2 program resumes.
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Two-Thread Example (Part 7)

Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
thread_yield switch frame
thread_switch
switch frame
Later, Thread 2 yields again. Scheduler chooses Thread 1.
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Two-Thread Example (Part 8)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
trap frame thread_yield
interrupt handler thread_switch
switch frame
Thread 1 context is restored, interrupt handler resumes.
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Two-Thread Example (Part 9)
Thread 1 Stack Thread 2 Stack
program program
stack frame(s) stack frame(s)
thread_yield
thread_switch
switch frame
Interrupt handler restores state from trap frame and return
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