Introduction to CS350

Lesley Istead, Kevin Lanctot

David R. Cheriton School of Computer Science University of Waterloo

Winter 2019

1/17

Welcome!

Welcome to CS350 - Operating Systems!

- Administrative Information
- Introduction to Operating Systems

General Information

Important links:

- http://www.student.cs.uwaterloo.ca/~cs350 Course personnel, office hours, readings, assignments, tutorials, previous midterms, review problems, etc.
- https://piazza.com Piazza will be used for announcements, extra notes, questions, corrections, etc. Please check piazza regularly. Do not post your code in public piazza posts; use private posts when appropriate.

3 / 17

Course Readings

Course notes are **required**.

They are **NOT** designed to be standalone. Come to class, take notes. Notes are available online from the course website. You may also purchase a printed copy, if you desire.

Textbook is **NOT** required, but highly recommended.

Operating Systems: Three Easy Pieces

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau Textbook is available **FREE** on-line. Link to the text is available on course website. All recommended readings are linked on course website.

Grading Scheme

```
A0, A1, A2a, A2b, A3: Assignment marks as a percentage M: Midterm exam grades as percentages F: Final exam grade as a percentage Normal = (0.02*A0+0.08*A1+0.07*A2a+0.08*A2b+0.10*A3)+(0.20*M+0.45*F) Exams = (0.20*M+0.45*F)/0.65 if (Exams < 50%) { FAIL EXAMS, FAIL THE COURSE Course Grade = min(Normal, Exams) } else { Course Grade = Normal }
```

You **WILL FAIL** this course if you fail the weighted exam average, regardless of your assignment grades.

5 / 17

Assignments

There are **5** assignments.

All assignments are to be done individually.

You will not be writing your own OS.

You will be adding/fixing features of an existing OS.

We use **OS/161** (~22,000 lines for kernel), which runs on **SYS/161** (MIPS simulator/VM)

Slip days:

- Allows flexibility in assignment deadlines
- Total of 5 slip days
- Can use maximum of 3 slip days per assignment (except A3)

Plagiarism and Academic Offenses

READ AND UNDERSTAND INFO ON COURSE WEB PAGE This course has extra requirements and ignorance is no excuse!

Do not use code from other sources:

- Do not copy code from friends, web sites, or other sources
- Do not search for or look at other code for any reason
- Avoid blogs that provide instructions
- We use VERY GOOD cheat detection software
- Every term people are caught
- Often: 0 on assignment and -5% off final grade

7 / 17

Plagiarism and Academic Offenses

IF you have taken this course before, you may reuse your previous code if:

- You ask your instructor for permission
- Your code was not subject to previous cheating penalties
- You understand it will be re-tested using our cheat detection software

What is an Operating System?

Generally, an OS is a system that:

- manages resources
- creates execution environments
- loads programs
- provides common services and utilities

Operating Systems

- originated 1951, 'LEO I' from J. Lyons and Co.
- started as simple I/O libraries, batch processors

9 / 17

Three views of an Operating System

Application View: what services does it provide?

System View: what problems does it solve?

Implementation View: how is it built?

An operating system is part cop, part facilitator.

Application View of an Operating System

The OS provides an execution environment for running programs. The execution environment:

- provides a program with the processor time and memory space that it needs to run, and
- provides interfaces through which a program can use networks, storage, I/O devices, and other system hardware components. Interfaces provide a simplified, abstract view of hardware to application programs.
- isolates running programs from one another and prevents undesirable interactions among them.

11 / 17

System View of an Operating System

The OS:

- manages the hardware resources of a computer system. Resources include processors, memory, disks and other storage devices, network interfaces, I/O devices such as keyboards, mice and monitors, etc.
- allocates resources among running programs.
- controls the sharing of resources among programs.

The OS itself also uses resources, which it must share with application programs.

Implementation View of an Operating System

The OS is a concurrent, real-time program.

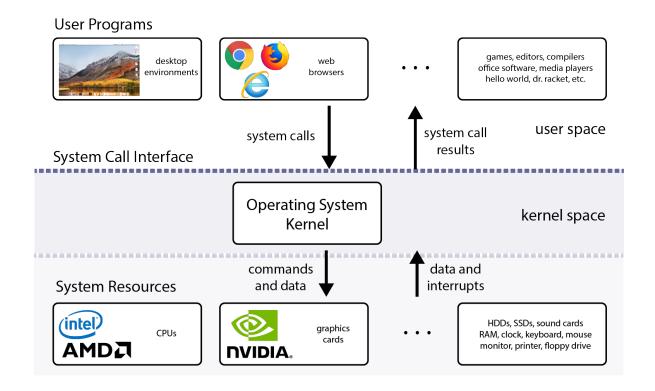
- Concurrency arises naturally in an OS when it supports concurrent applications, and because it must interact directly with the hardware.
- Hardware interactions also impose timing constraints.

How does the OS implement concurrency and hardware interactions?

Concurrency

... multiple programs or sequences of instructions running, or appearing to run, at the same time.

13 / 17


Definitions

kernel: The operating system kernel is the part of the operating system that responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and may include other related programs that provide services for applications. This may include things like:

- utility programs
- command interpreters
- programming libraries

Schematic View of an Operating System

15 / 17

Operating System Abstractions

The **execution environment** provided by the OS includes a variety of **abstract entities** that can be manipulated by a running program. Examples of these abstractions:

files and file systems \rightarrow secondary storage address spaces \rightarrow primary memory (RAM) processes, threads \rightarrow program execution sockets, pipes \rightarrow network or other message channels

This course will cover why and how these abstractions are:

- designed the way they are
- manipulated by application programs
- implemented by the OS

Course Coverage ■ Introduction ■ Threads and Concurrency ■ Synchronization ■ Processes and the Kernel ■ Virtual Memory ■ Scheduling ■ Devices and Device Management ■ File Systems ■ Virtual Machines 17 / 17