Devices and /O

key concepts: device registers, device drivers,

program-controlled 1/0, DMA, polling, disk drives, disk head
scheduling

Lesley Istead, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Winter 2019

1/26

Devices

m devices are how a computer recieves input and produce
output

m a keyboard is an input device
m a printer is an output device
m a touch screen is both input and output

m sys/161 example devices:

timer/clock - current time, timer, beep
m disk drive - persistent storage

m serial console - character input/output
m text screen - character-oriented graphics
m network interface - packet input/output

keyboards, mice, printers, graphics cards, USB fans, joysticks, key-
loggers, CD drives, card readers, sound cards, ... are all devices

2 /26

Device Register Example: Sys/161 timer/clock

m communication with devices carried out through device
registers
m three primary types of device registers

m status: tells you something about the device's current state.
Typically, a status register is read.

m command: issue a command to the device by writing a
particular value to this register.

m data: used to transfer larger blocks of data to/from the device.

m some device registers are combinations of primary types

m a status and command register is read to discover the
device's state and written to issue the device a command.

3/26

Device Register Example: Sys/161 timer/clock

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry
12 4 | status and command | interrupt (reading clears)
16 4 status and command | countdown time (microseconds)
20 4 command speaker (causes beeps)

The clock is used in preemptive scheduling.

4/26

Device Register Example: Serial Console

Offset | Size Type Description
0 4 command and data | character buffer
4 4 status writelRQ
8 4 status readlRQ

If a write is in progress, the device exhibits undefined behaviour if
another write is attempted.

5 /26

Device Drivers

m a device driver is a part of the kernel that interacts with a

device
m example: write character to serial output device

// only one writer at a time
P(output device write semaphore)
// trigger the write operation
write character to device data register
repeat {
read writeIRQ register
} until status is ‘‘completed’’
// make the device ready again
write writeIRQ register to ack completion
V(output device write semaphore)

m this example illustrates polling: the kernel driver repeatedly
checks device status

Although the majority of device drivers are a (dynamically loadable)
part of the kernel, some drivers exist in user-space.

6 /26

Using Interrupts to Avoid Polling

Device Driver Write Handler:

// only one writer at a time

P(output device write semaphore)

// trigger write operation

write character to device data register

Interrupt Handler for Serial Device:

// make the device ready again
write writeIRQ register to ack completion
V(output device write semaphore)

7/26

Accessing Devices

m how can a device driver access device registers?
m Option 1: Port-Mapped 1/0 with special 1/0 instructions

m device registers are assigned “port” numbers, which correspond
to regions of memory in a separate, smaller address space

m special 1/0 instructions, such as in and out instructions on
x86 are used to transfer data between a specified port and a
CPU register

m Option 2: memory-mapped 1/0
m each device register has a physical memory address
m device drivers can read from or write to device registers using

normal load and store instructions, as though accessing
memory

A system may use both port-mapped and memory-mapped 1/O.

8 /26

MIPS/0OS161 Physical Address Space

0x00000000 OXFFFFFFFF
RAM

ROM: 0xTFC00000 — Ox1FDFFFFF
devices: 0x1FE00000 — Ox1FFFFFFF

64 KB device "slot"
0x1FE00000 Ox1FFFFFFF

Each device is assigned to one of 32 64KB device “slots”. A device's
registers and data buffers are memory-mapped into its assigned slot.

9/26

Large Data Transfer To/From Devices

In addition to port and memory mapped |/O, large data blocks can
be transferred using other strategies.
m program-controlled 1/0

The device driver moves the data between memory and a buffer on the device.
The CPU is busy while the data is being transferred.

m direct memory access (DMA)
The device itself is responsible for moving data to/from memory. CPU is not

busy during this data transfer, and is free to do something else.

CPU

memory disk

Sys/161 disks do program-controlled 1/0.

10 /26

Persistant Storage Devices

m persistant storage is any device where data persists even
when the device is without power
m physical memory is not persistant
m a hard disk is persistant
m also referred to as non-volatile
m persistant storage comes in many forms
m punched cards of metal or paper
m magnetic drums, tapes
m compact, floppy and hard disks
m solid state memory
m ReRam (resistive RAM)

The earliest form of persistant storage was punched metal cards
which held the " programs” for Jacquard weaving looms in the 1700s.

Magnetic tapes are still in active use today!

11/26

Hard Disks

m commonly used persistant storage device
m a number of spinning, ferromagnetic-coated platters
read /written by a moving R/W head

read/write head spindle

| — O
= platter

Platters are typially made from glass or porcelain. Hence, they are
exceptionally fragile.

Often called mechanical disks, both patter and read/write head must
move to perform a read or write operation. This motion is costly.

12 /26

Logical View of a Disk Drive

4——— rotation m disk is an array of numbered

tracks blocks (or sectors)

m each block is the same size
(e.g., 512 bytes)

m blocks are the unit of
transfer between the disk
and memory

m typically, one or more
contiguous blocks can be
transferred in a single
operation

m assume, for simplicity, that
read/write head each track contains the
same number of sectors

13 /26

Cost Model for Disk I/O

m moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate
track

m depends on seek distance, the distance (in tracks) between
previous and current request
m value: 0 milliseconds to cost of max seek distance

rotational latency: wait until the desired sectors spin to the
read /write heads

m depends on rotational speed of disk
m disk is always spinning
m value: 0 milliseconds to cost of single rotation

transfer time: wait while the desired sectors spin past the
read /write heads

m depends on the rotational speed of the disk and the amount of
data accessed

m Request Service Time = Seek Time + Rotational Latency +
Transfer Time

14 / 26

Request Service Time Example

A disk has a total capacity of 232 bytes. The disk has a single
platter with 220 tracks. Each track has 28 sectors. The disk
operates at 10000RPM and has a maximum seek time of 20
milliseconds.

How many bytes are in a track?
BytesPerTrack = DiskCapacity / Num Tracks

How many bytes are in a sector?
BytesPerSector = BytesPerTrack / NumSectorsPerTrack

What is the maximum rotational latency?
MaxLatency = 60/ RPM

What is the average seek time and rotational latency?
AverageSeek = MaxSeek /2
Averagelatency = MaxLatency /2

What is the cost to transfer 1 sector?
SectorLatency = MaxLatency / NumSectorsPer Track

@ What is the cost to read 10 consecutive sectors from this disk?
RequestServiceTime = Seek + RotationalLatency + TransferTime

15 /26

Request Service Time Example

A disk has a total capacity of 232 bytes. The disk has a single

platter with 229 tracks. Each track has 28 sectors. The disk
operates at 10000RPM and has a maximum seek time of 20
milliseconds.
How many bytes are in a track?
= 232 /220 — 212 pytes per track

How many bytes are in a sector?
= 212 /28 — 24 bytes per sector

= 60/10000 = 0.006 or 6 milliseconds

What is the average seek time and rotational latency?
= 20/2 = 10 milliseconds average seek time
= 6/2 = 3 milliseconds average rotational latency

What is the maximum rotational latency?

What is the cost to transfer 1 sector?
=6/28 = 6/256 = 0.0195 milliseconds per sector

What is the cost to read 10 consecutive sectors from this disk?

=10+ 3 + 10(0.0195) = 13.195 milliseconds

Note that since we do not know the position of the head, or the platter, we use
the average seek and average rotational latency.

B &

16 /26

Performance Implications of Disk Characteristics

m larger transfers to/from a disk device are more efficient than
smaller ones. That is, the cost (time) per byte is smaller for
larger transfers. (Why?)

m sequential 1/0 is faster than non-sequential 1/0O

m sequential |/O operations eliminate the need for (most) seeks

m while sequential 1/0 is not always possible, we can group
requests to try and reduce average request time

Historically, seek time is the dominating cost. High-end drives can
have maximum seek times around 4 milliseconds. Consumer grade
drives more commonly have seek times between 9 and 12 millisec-
onds.

17 /26

Disk Head Scheduling

m goal: reduce seek times by controlling the order in which
requests are serviced

m disk head scheduling may be performed by the device, by the
operating system, or both

m for disk head scheduling to be effective, there must be a
queue of outstanding disk requests (otherwise there is nothing
to reorder)

m first-come, first served is fair and simple, but offers no
optimization for seek times

1 50 100 150 200
NN NN NN N NN

T T [[[[[[
| | | | | | |
\OV’. \.. | | \.\
! ! ! I -

I I I > I I I I
/

/ / / /

T
18 /26

arrival order: 104 183 14 65 70

Shortest Seek Time First (SSTF)

m choose closest request (a greedy approach)
m seek times are reduced, but requests may starve

arrival order: 104 183 37 14 65 70

19 /26

Elevator Algorithms (SCAN)

m Under SCAN, aka the elevator algorithm, the disk head moves
in one direction until there are no more requests in front of it,

then reverses direction.
m there are many variations on this idea
m SCAN reduces seek times (relative to FCFS), while avoiding

starvation

arrival order: 104 183 37 14 65 70

20 /26

Device Register Example: Sys/161 disk controller

Offset | Size Type Description

0 4 status number of sectors

4 4 status and command | status

38 4 command sector number

12 4 status rotational speed (RPM)
32768 | 512 data transfer buffer

21 /26

Writing to a Sys/161 Disk

Device Driver Write Handler:

// only one disk request at a time

P(disk semaphore)

copy data from memory to device transfer buffer

write target sector number to disk sector number register
write ‘‘write’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again
write disk status register to ack completion
V(disk completion semaphore)

22 /26

Reading From a Sys/161 Disk

Device Driver Read Handler:

// only one disk request at a time

P(disk semaphore)

write target sector number to disk sector number register
write ‘‘read’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

copy data from device transfer buffer to memory

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again
write disk status register to ack completion
V(disk completion semaphore)

23 /26

Solid State Drives(SSD)

m no mechanical parts; use integrated circuits for persistant
storage instead of magnetic surfaces

m variety of implementations
m DRAM: requires constant power to keep values
m Flash Memory: traps electrons in quantum cage
m logically divided into blocks and pages
m 2, 4 or 8KB pages
m 32KB-4MB blocks
m reads/writes at page level
m pages are initialized to 1s; can transition 1 — 0 at page level
(i.e., write new page)
m a high voltage is required to switch 0 — 1 (i.e.,

overwrite/delete page)
m cannot apply high voltage at page level, only to blocks

m overwriting/deleting data must be done at the block level

24 /26

Writing and Deleting from Flash Memory

m Naive Solution (slow):
m read whole block into memory
m re-initialize block (all page bits back to 1s)
m update block in memory; write back to SSD
m SSD controller handles requests (faster):
m mark page to be deleted/overwritten as invalid
m write to an unused page
m update translation table
m requires garbage collection

Each block of an SSD has a limited number of write cycles before
it becomes read-only. SSD controllers perform wear leveling, dis-
tributing writes evenly across blocks, so that the blocks wear down
at an even rate.

Hence, defragmentation, which takes files spread across multiple,
non-sequential pages and makes them sequential, can be harmful to
the lifespan of an SSD. Additionally, since there are no moving parts,
defragmentation serves no performance advantage.

25 /26

Persistent RAM

m values are persistant in the absence of power

m ReRAM: resistive RAM
m 3D XPoint, Intel Optane

m can be used to improve the performance of secondary storage

m traditional CPU caches are small; not effective for caching
many disk blocks

m RAM can cache i-nodes and data blocks; but should be used
for address spaces

m use persistant RAM instead

m i-nodes and data blocks silently cached to this special memory

m Intel Optane, for example, modules are 16-32GB, so many
blocks can be cached giving big performance improvements
when mechanical disks are used

26 / 26

