Threads and Concurrency

key concepts: threads, concurrent execution, timesharing,
context switch, interrupts, preemption

Lesley Istead, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Winter 2019

1/40

What is a thread?

. a sequence of instructions.

m A normal sequential program consists of a single thread of
execution.

m [hreads provide a way for programmers to express
concurrency in a program.

m In threaded concurrent programs there are multiple threads of
execution, all occuring at the same time.

Recall: Concurrency

. multiple programs or sequences of instructions running, or ap-
pearing to run, at the same time.

2 /40

Why Threads?

parallelism exposed by threads enables parallel execution if the
underlying hardware supports it; programs can run faster

parallelism exposed by threads enables better processor
utilization; when one thread blocks, another may be able
to run

Blocking

Threads may block, ceasing execution for a period of time, or, un-
til some condition has been met. When a thread blocks, it is not
executing instructions—the CPU is idle. Concurrency lets the CPU
execute a different thread during this time. CPU time is money!

3/40

OS/161 Threaded Concurrency Examples

Key ideas from the examples:
m A thread can create new threads using thread_fork

m New theads start execution in a function specified as a
parameter to thread _fork

m The original thread (which called thread fork) and the new
thread (which is created by the call to thread _fork) proceed
concurrently, as two simultaneous sequential threads of
execution.

m All threads share access to the program’s global variables and
heap.

m Each thread’s function activations are private to that thread.

In the OS

.. a thread is represented as a structure or object.

4 /40

OS/161's Thread Interface

m create a new thread:
int thread_fork(

const char *name, // name of new thread

struct proc *proc, // thread’s process

void (*func) // new thread’s function
(void *, unsigned long),

void *datal, // function’s first param

unsigned long data2 // function’s second param

)3

m terminate the calling thread:
void thread_exit(void);

m volutarily yield execution:
void thread_yield(void);

See kern/include/thread.h

5 /40

Other Thread Libraries and Functions

m join a common thread function to force one thread to block
until another finishes; NOT offered by OS/161

m pthreads POSIX threads, a well-supported, popular, and
sophisticated thread API

m OpenMP a cross-platform, simple multi-processing and
thread API

m GPGPU Programming general-purpose GPU programming
APIs, e.g. nVidia's CUDA, create/run threads on GPU instead
of CPU

Concurrency and Threads

m originated in 1950s to improve CPU utilization during I/O
operations

m "modern” timesharing originated in the 1960s

6 /40

Review: Sequential Program Execution

address space

SP

program stack
counter pointer

CPU regqisters

The Fetch/Execute Cycle
fetch instruction PC points to
decode and execute instruction
advance PC

7/40
Review: MIPS Registers
num | name | use num | name | use
0 z0 | always zero 24-25 | t8-t9 | temps (caller-save)
1 at assembler reserved 26-27 | kO-k1 | kernel temps
2 v0 return val/syscall # 28 gp global pointer
3 vl return value 29 sp stack pointer
4-7 | a0-a3 | subroutine args 30 s8/fp | frame ptr (callee-save)
8-15 | t0-t7 | temps (caller-save) 31 ra return addr (for jal)
16-23 | sO-s7 | saved (callee-save)

See kern/arch/mips/include/kern/regdefs.h

8 /40

Review: The Stack

stack
*
to
OXFFFF FFFF FuncA() {
other FuncB() ;
stack
frames
}
FuncB() {
FuncC();
FuncB }
FuncC 10 Ox0
v

9/40

Concurrent Program Execution (Two Threads)

thread 2 CPU registers

program
counter S P

stack
pointer

thread

address space [

PC SP
program stack

counter pointer

thread 1 CPU registers

Conceptually, each thread executes sequentially using its private reg-
ister contents and stack.

10 / 40

Implementing Concurrent Threads

What options exist?

Hardware support. P processors, C cores, M multithreading
per core = PCM threads can execute simultaneously.

Timesharing. Multiple threads take turns on the same
hardware; rapidly switching between threads so all make
progress.

Hardware support + Timesharing. PCM threads running
simultaneously with timesharing.

Example: Intel i9-9900X

... 10 cores, each core can run 2 threads (multithreading degree).
Therefore, P =1, C =10, and M = 2, so PCM = 20 threads can
run simultaneously.

11 /40

Timesharing and Context Switches

m When timesharing, the switch from one thread to another is
called a context switch
m What happens during a context switch:
decide which thread will run next (scheduling)
save register contents of current thread
load register contents of next thread
m Thread context must be saved/restored carefully, since thread
execution continuously changes the context

Timesharing

.. each thread gets a small amount of time to execute on the CPU,
when it expires, a context switch occurs. Threads share the CPU,
giving the user the illusion of multiple programs running at the same
time.

12 /40

Context Switch on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:
/* a0: address of switchframe pointer of old thread. */
/* al: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10%4 = 40 */
addi sp, sp, —40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw sb, 20(sp)

sw s4, 16(sp)

sW s3, 12(sp)

sW s2, 8(sp)

sw sl1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)

13 /40

Context Switch on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */
lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */
lw sO0, 0(sp)

lw s1, 4(sp)

1w s2, 8(sp)

1w s3, 12(sp)

lvw s4, 16(sp)

lw s5, 20(sp)

1w s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */
.end switchframe_switch

14 / 40

What Causes Context Switches?

m the running thread calls thread_yield
m running thread voluntarily allows other threads to run
m the running thread calls thread _exit
m running thread is terminated
m the running thread blocks, via a call to wchan_sleep
m more on this later ...
m the running thread is preempted

m running thread involuntarily stops running

The OS

strives to maintain high CPU utilization. Hence, in addition
to timesharing, context switches occur whenever a thread ceases to
execute instructions.

15 / 40
Thread States
preemption or
< thread_yeild
: thread_exit
ready running —>
di h >
ready pool Ispatc CPU
resource available resource not available
wake_all/one wchan_sleep

blocked

wait channels

running: currently executing
ready: ready to execute

blocked: waiting for something, so not ready to execute.

16 / 40

OS/161 Thread Stack after Voluntary Context Switch

stack

*

to
OxFFFF FFFF

m program calls thread yield,
other to yield the CPU
stack

frames stack
growth

m thread yield calls
thread _switch, to perform a
context switch

m thread switch chooses a new
thread, calls

) switchframe switch to
thread_yield perform low-level context switch
v

thread_switch

switchframe toixo

17 / 40

Timesharing and Preemption

m timesharing—concurrency achieved by rapidly switching
between threads

m how rapidly? impose a limit on CPU time, the scheduling
quantum

m the quantum is an upper bound on how long a thread can run
before it must yield the CPU

m how do you stop a running thread, that never yields, blocks or
exits when the quantum expires?

m preemption forces a running thread to stop running, so that
another thread can have a chance

m to implement preemption, the thread library must have a
means of “getting control” (causing thread library code to be
executed) even though the running thread has not called a
thread library function

m this is normally accomplished using interrupts

18 / 40

Review: Interrupts

m an interrupt is an event that occurs during the execution of a
program

m interrupts are caused by system devices (hardware), e.g., a
timer, a disk controller, a network interface

m when an interrupt occurs, the hardware automatically
transfers control to a fixed location in memory

m at that memory location, the thread library places a procedure
called an interrupt handler

m the interrupt handler normally:

create a trap frame to record thread context at the time of the
interrupt

determines which device caused the interrupt and performs
device-specific processing

restores the saved thread context from the trap frame and
resumes execution of the thread

19 /40

OS/161 Thread Stack after in Interrupt

stack
4
to
OXFFFF FFFF
other
stack
frames stack
growth
P interrupt!
trap frame
v
interrupt handler
stack frame(s) to 0x0
v

20 / 40

Preemptive Scheduling

m A preemptive scheduler uses the scheduling quantum to
impose a time limit on running threads

m [hreads may block or yield before their quantum has expired.
m Periodic timer interrupts allow running time to be tracked.

m If a thread has run too long, the timer interrupt handler
preempts the thread by calling thread_yield.

m [he preempted thread changes state from running to ready,
and it is placed on the ready queue.

m Each time a thread goes from ready to running, the runtime
starts out at 0. Runtime does not accumulate.

0S/161 threads use preemptive round-robin scheduling.

21 /40

OS/161 Thread Stack after Preemption

stack
other to
OXFFFF FFFF
stack
frames

P timer interrupt!
growth

interrupt handler
stack frame(s)

thread_yield

thread_switch

. to Ox0
switchframe +

22 / 40

Two-Thread Example - 1

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
stack thread_yield
growth
thread_switch
to Ox0
v

Thread 1 is RUNNING. Thread 2 is READY, having called
thread_yield previously.

23 / 40

Two-Thread Example - 2

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
. . |
timer interrupt: stack > thread_yield
growth
thread_switch
to 0x0
4

A timer interrupt occurs.

24 /40

Two-Thread Example - 3

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
timer interrupt! .
stack thread_yield
growth trap frame
thread_switch
to 0x0
4

Thread 1 is preempted, a trapframe is created to save its context.

25 / 40

Two-Thread Example - 4

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
timer interrupt! .
stack thread_yield
growth trap frame
thread_switch
interrupt handler
to 0x0
v

The timer interrupt handler determines what happened, and, calls
the appropriate handler.

26 / 40

Two-Thread Example - 5

*

to
OXFFFF FFFF

timer interrupt!
stack

growth

to 0x0

Thread 1 stack

Thread 2 stack

program
stack
frames

trap frame

interrupt handler
stack frame(s)

thread_yield

program
stack
frames

thread_yield

thread_switch

Thread 1 has exceeded its quantum. Yield the CPU to another

thread, call thread_yield.

27 /40

Two-Thread Example - 6

+

to
OxFFFF FFFF

timer interrupt!
stack

growth

to Ox0

Thread 1 stack

Thread 2 stack

program
stack
frames

trap frame

interrupt handler
stack frame(s)

thread_yield

thread_switch

program
stack
frames

thread_yield

thread_switch

High-level context switch: choose new thread, save caller-save reg-

isters.

28 / 40

Two-Thread Example - 7

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
timer interrupt! .
stack thread_yield
growth trap frame
thread_switch

interrupt handler

thread_yield

thread_switch

to Ox0
v switchframe

Low-level context switch. Save callee-save registers.

29 / 40

Two-Thread Example - 8

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames

stack thread_yield
growth trap frame

thread_switch

interrupt handler
stack frame(s)

thread_yield

thread_switch

to 0x0
v switchframe

Thread 2 is now RUNNING, Thread 1 is now READY. Thread 2
returns from low-level context switch, restoring callee-save registers.

30/ 40

Two-Thread Example - 9

*

to
OXFFFF FFFF

stack
growth

to 0x0

v

Thread 1 stack

Thread 2 stack

program
stack
frames

trap frame

interrupt handler
stack frame(s)

thread_yield

thread_switch

program
stack
frames

thread_yield

Return from high-level context switch, restoring caller-save registers.

31 /40

Two-Thread Example - 10

*

to
OXFFFF FFFF

stack
growth

to 0x0

v

Thread 1 stack

Thread 2 stack

program
stack
frames

interrupt handler
stack frame(s)

thread_yield

thread_switch

program
stack
frames

Return from yield. Context is fully restored. Thread 2 is now running
its regular program.

32 /40

Two-Thread Example - 11

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
interrupt handler
stack frame(s)
thread_yield
thread_switch
to 0x0
:
Thread 2 yields.
33 /40
Two-Thread Example - 12
Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
thread_switch
interrupt handler
stack frame(s)
thread_yield
thread_switch
to 0x0
:

High-level context

switch.

34 / 40

Two-Thread Example - 13

Thread 1 stack Thread 2 stack
OKFFFF FFFF program program
stack stack
frames frames
ti int t! a
imerinterrup stack trap f thread_yield
growth rap frame

thread_switch
interrupt handler

thread_yield

thread_switch

to 0x0
*

Low-level context switch.

35 / 40

Two-Thread Example - 14

Thread 1 stack Thread 2 stack
+
to
OXFFFF FFFF program program
stack stack
frames frames

thread_switch
interrupt handler

thread_yield

thread_switch

to 0x0

Thread 1 is now RUNNING. Thread 2 is now READY. Return from
low-level context switch.

36 / 40

Two-Thread Example - 15

4

to
OXFFFF FFFF

stack
growth

to 0x0

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_yield

interrupt handler
stack frame(s)

thread_yield

thread_switch

Return from high-level context switch.

37 /40

Two-Thread Example - 16

4

to
OXFFFF FFFF

stack
growth

to 0x0

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_switch

interrupt handler
stack frame(s)

Return from yield.

38 /40

Two-Thread Example - 17

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames

thread_switch

to 0x0

Return from interrupt handling functions.

39 /40

Two-Thread Example - 18

Thread 1 stack Thread 2 stack
4
to
OXFFFF FFFF program program
stack stack
frames frames
stack thread_yield
growth
thread_switch
to Ox0
v

Restore thread 1's context (stored in the trapframe), return to regular
program.

40 / 40

