
CS350: Operating Systems

Instructors: Ali Mashtizadeh and Rob Hackman

University of Waterloo

1 / 16



Administrivia

• Class web page: https://cs.uwaterloo.ca/cs350/
I All assignments and handouts

• Textbooks

I Operating System Concepts

I Operating Systems: Three Easy Pieces

2 / 16

https://cs.uwaterloo.ca/cs350/


Administrivia Continued

• Q&A through Piazza (see class website)

• Quizzes and Final through Waterloo LEARN

• Four projects due throughout term

3 / 16



Course Goals: Introduce you to Systems

• Operating Systems

• Distributed Systems

• Networking

• Internet of Things

• Computer Architecture

• Embedded Systems

• Database Systems

• Systems and Machine Learning

• ...

4 / 16



Course Goals: Practical Understanding of OSes

• Introduce you to operating systems

I Every computer, phone and watch runs an OS

I Makes you a more effective programmer

I How the OS affects your software

• General systems concepts

I Concurrency, memory management, and I/O

I Security and protection

I Tools for software performance

• Practical skills

I Learn to work with large code bases

I My lectures: industry and research experience

5 / 16



What is an operating system?

• Layer between applications and hardware

Operating System

Hardware: CPU, Memory and Devices

emacsgcc Doom

• Makes hardware useful to the programmer

• Usually: Provides abstractions for applications

I Manages and hides details of hardware

I Accesses hardware through low/level interfaces unavailable to applications

• Often: Provides protection

I Prevents one process/user from clobbering another

6 / 16



Why study operating systems?

• Operating systems are a maturing field

I Most people use a handful of mature OSes

I Hard to get people to switch operating systems

I Hard to have impact with a new OS

• High-performance servers are an OS issue

I Face many of the same issues as OSes

• Resource consumption is an OS issue

I Battery life, radio spectrum, etc.

• Security is an OS issue

I Security requires a solid foundation

• New “smart” devices need new OSes

• Web browsers, databases, and game engines look like OSes
7 / 16



Course topics

• Threads & Processes

• Concurrency & Synchronization

• Scheduling

• Virtual Memory

• I/O

• Disks, File systems, Network file systems

• Protection & Security

• Virtual machines

• Will often use Unix as the example

I Most OSes heavily influenced by Unix (e.g. OS161)

I Windows is a notable exception

8 / 16



Primitive Operating Systems

• Just a library of standard services (no protection)

Hardware: CPU, Memory and Devices

IoT Sensor

Library OS

I Standard interface above hardware-specific drivers, etc.

• Simplifying assumptions
I System runs one program at a time

I No bad users or programs (often bad assumption)

• Problem: Poor utilization
I …of hardware (e.g., CPU idle while waiting for disk)

I …of human user (must wait for each program to finish)
9 / 16



Multitasking

Operating System

Hardware: CPU, Memory and Devices

emacsgcc

• Idea: Run more than one process at once
I When one process blocks (waiting for user input, IO, etc.) run another process

• Problem: What can ill-behaved process do?

I Go into infinite loop and never relinquish CPU

I Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems
I Preemption – take CPU away from looping process

I Memory protection – protect process’s memory from one another

10 / 16



Multitasking

Operating System

Hardware: CPU, Memory and Devices

emacsgcc

• Idea: Run more than one process at once
I When one process blocks (waiting for user input, IO, etc.) run another process

• Problem: What can ill-behaved process do?
I Go into infinite loop and never relinquish CPU

I Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems
I Preemption – take CPU away from looping process

I Memory protection – protect process’s memory from one another

10 / 16



Multi-user OSes

Operating System

Hardware: CPU, Memory and Devices

emacsgcc

• Many OSes use protection to serve distrustful users/apps

• Idea: With N users, system not N times slower
I User demand for CPU is bursty

• What can go wrong?

I Users are gluttons, use too much CPU, etc. (need policies)

I Total memory usage greater than in machine (must virtualize)

I Super-linear slowdown with increasing demand (thrashing)

11 / 16



Multi-user OSes

Operating System

Hardware: CPU, Memory and Devices

emacsgcc

• Many OSes use protection to serve distrustful users/apps

• Idea: With N users, system not N times slower
I User demand for CPU is bursty

• What can go wrong?
I Users are gluttons, use too much CPU, etc. (need policies)

I Total memory usage greater than in machine (must virtualize)

I Super-linear slowdown with increasing demand (thrashing)
11 / 16



Protection

• Mechanisms that isolate bad programs and people

• Pre-emption:

I Give application a resource, take it away if needed elsewhere

• Interposition/mediation:

I Place OS between application and “stuff”

I Track all pieces that application allowed to use (e.g., in table)

I On every access, look in table to check that access legal

• Privileged & unprivileged modes in CPUs:

I Applications unprivileged (unprivileged usermode)

I OS privileged (privileged supervisor/kernelmode)

I Protection operations can only be done in privileged mode

12 / 16



Typical OS structure

kernel

driver
device

P1 P2 P3 P4

sockets
TCP/IP

system
file

console disk

device
driver driver

device

network

VM
scheduler

IPC

user

• Most software runs as user-level processes (P[1-4])

• OS kernel runs in privilegedmode (shaded)
I Creates/deletes processes

I Provides access to hardware
13 / 16



System calls

• Applications can invoke kernel through system calls
I Special instruction transfers control to kernel

I …which dispatches to one of few hundred syscall handlers
14 / 16



System calls (continued)

• Goal: Do things app. can’t do in unprivileged mode

I Like a library call, but into more privileged kernel code

• Kernel supplies well-defined system call interface

I Applications set up syscall arguments and trap to kernel

I Kernel performs operation and returns result

• Higher-level functions built on syscall interface

I printf, scanf, gets, etc. all user-level code

• Example: POSIX/UNIX interface

I open, close, read, write, …

15 / 16



System call example

• Standard library implemented in terms of syscalls

I printf – in libc, has same privileges as application

I calls write – in kernel, which can send bits out serial port

16 / 16


