
CS350: Operating Systems

Lecture 11: I/O and Disks

Ali Mashtizadeh

University of Waterloo

1 / 38

Memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

• CPU accesses physical memory over a bus

• Devices access memory over I/O bus with DMA

• Devices can appear to be a region of memory

2 / 38

Realistic PC architecture

*Newest CPUs don’t have North Bridge;

Programable
Interrupt

Controller
bus

I/O
APIC

CPU

Main
memory

North
bus
side
front-

South
Bridge

bus
ISA

CPU

USB

bus
AGP

PCI
IRQsbus

PCI

Bridge*

memory controller integrated into CPU

Advanced

3 / 38

What is memory?

• SRAM – Static RAM

I Like two NOT gates circularly wired input-to-output

I 4–6 transistors per bit, actively holds its value

I Very fast, used to cache slower memory

• DRAM – Dynamic RAM

I A capacitor + gate, holds charge to indicate bit value

I 1 transistor per bit – extremely dense storage

I Charge leaks—need slow comparator to decide if bit 1 or 0

I Must re-write charge after reading, and periodically refresh

• VRAM – “Video RAM”

I Dual ported, can write while someone else reads

4 / 38

What is I/O bus? E.g., PCI

5 / 38

Communicating with a device

• Memory-mapped device registers

I Certain physical addresses correspond to device registers

I Load/store gets status/sends instructions – not real memory

• Device memory – device may have memory OS can write to directly on other
side of I/O bus

• Special I/O instructions

I Some CPUs (e.g., x86) have special I/O instructions

I Like load & store, but asserts special I/O pin on CPU

I OS can allow user-mode access to I/O ports with finer granularity than page

• DMA – place instructions to card in main memory

I Typically then need to “poke” card by writing to register

I Overlaps unrelated computation with moving data over (typically slower than
memory) I/O bus

6 / 38

Example: parallel port (LPT1)

• Simple hardware has three control registers:

D7 D6 D5 D4 D3 D2 D1 D0

read/write data register (port 0x378)

BSY ACK PAP OFON ERR – – –
read-only status register (port 0x379)

– – – IRQ DSL INI ALF STR
read/write control register (port 0x37a)

• Every bit except IRQ corresponds to a pin on 25-pin connector:

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

OFON
PAP
BSY
ACK

Data Out

STR

7
6
5
4
3
2
1
0

Ground

DSL
INI

ERR
ALF

[Wikipedia][Messmer] 7 / 38

Writing bit to parallel port [osdev]

void
sendbyte(uint8_t byte)
{
/* Wait until BSY bit is 1. */
while ((inb (0x379) & 0x80) == 0)
delay ();

/* Put the byte we wish to send on pins D7-0. */
outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer
* that a byte is available */
uint8_t ctrlval = inb (0x37a);
outb (0x37a, ctrlval | 0x01);
delay ();
outb (0x37a, ctrlval);

}

8 / 38

http://wiki.osdev.org/Parallel_port

Memory-mapped IO

• in/out instructions slow and clunky

I Instruction format restricts what registers you can use

I Only allows 216 different port numbers

I Per-range access control turns out not to be useful
(any port access allows you to disable all interrupts)

• Devices can achieve same effect with physical addresses, e.g.:

volatile int32_t *device_control
= (int32_t *) 0xc00c0100;

*device_control = 0x80;
int32_t status = *device_control;

I OS must map physical to virtual addresses, ensure non-cachable

• Assign physical addresses at boot to avoid conflicts. PCI:

I Slow/clunky way to access configuration registers on device

I Use that to assign ranges of physical addresses to device

9 / 38

DMA buffers

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500

…

• Idea: only use CPU to transfer control requests, not data

• Include list of buffer locations in main memory
I Device reads list and accesses buffers through DMA

I Descriptions sometimes allow for scatter/gather I/O 10 / 38

Example: Network Interface Card

H
o

st
 I

/O
 b

u
s

Adaptor

Network link
Bus

interface
Link

interface

• Link interface talks to wire/fiber/antenna

I Typically does framing, link-layer CRC

• FIFOs on card provide small amount of buffering

• Bus interface logic uses DMA to move packets to and from buffers in main
memory

11 / 38

Example: IDE disk read w. DMA

12 / 38

Driver architecture

• Device driver provides several entry points to kernel

I Reset, ioctl, output, interrupt, read, write, strategy …

• How should driver synchronize with card?

I E.g., Need to know when transmit buffers free or packets arrive

I Need to know when disk request complete

• One approach: Polling

I Sent a packet? Loop asking card when buffer is free

I Waiting to receive? Keep asking card if it has packet

I Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?

I Can’t use CPU for anything else while polling

I Or schedule poll in future and do something else, but then high latency to receive
packet or process disk block

13 / 38

Driver architecture

• Device driver provides several entry points to kernel

I Reset, ioctl, output, interrupt, read, write, strategy …

• How should driver synchronize with card?

I E.g., Need to know when transmit buffers free or packets arrive

I Need to know when disk request complete

• One approach: Polling

I Sent a packet? Loop asking card when buffer is free

I Waiting to receive? Keep asking card if it has packet

I Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?

I Can’t use CPU for anything else while polling

I Or schedule poll in future and do something else, but then high latency to receive
packet or process disk block

13 / 38

Interrupt driven devices

• Instead, ask card to interrupt CPU on events

I Interrupt handler runs at high priority

I Asks card what happened (xmit buffer free, new packet)

I This is what most general-purpose OSes do

• Bad under high network packet arrival rate

I Packets can arrive faster than OS can process them

I Interrupts are very expensive (context switch)

I Interrupt handlers have high priority

I In worst case, can spend 100% of time in interrupt handler and never make any
progress – receive livelock

I Best: Adaptive switching between interrupts and polling

• Very good for disk requests

• Rest of today: Disks (network devices in 3 lectures)
14 / 38

Anatomy of a disk [Ruemmler]

• Stack of magnetic platters

I Rotate together on a central spindle @3,600-15,000 RPM

I Drive speed drifts slowly over time

I Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly

I Arms rotate around pivot, all move together

I Pivot offers some resistance to linear shocks

I Arms contain disk heads–one for each recording surface

I Heads read and write data to platters

15 / 38

https://rcs.uwaterloo.ca/~ali/sched/readings/diskmodel.pdf

Disk

16 / 38

Disk

16 / 38

Disk

16 / 38

Storage on a magnetic platter

• Platters divided into concentric tracks

• A stack of tracks of fixed radius is a cylinder

• Heads record and sense data along cylinders

I Significant fractions of encoded stream for error correction

• Generally only one head active at a time

I Disks usually have one set of read-write circuitry

I Must worry about cross-talk between channels

I Hard to keep multiple heads exactly aligned

17 / 38

Cylinders, tracks, & sectors

18 / 38

Disk positioning system

• Move head to specific track and keep it there

I Resist physical shocks, imperfect tracks, etc.

• A seek consists of up to four phases:

I speedup–accelerate arm to max speed or half way point

I coast–at max speed (for long seeks)

I slowdown–stops arm near destination

I settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)

• Short (200-400 cyl.) seeks dominated by speedup

I Accelerations of 40g

19 / 38

Seek details

• Head switches comparable to short seeks

I May also require head adjustment

I Settles take longer for writes than for reads – Why?

If read strays from track, catch error with checksum, retry

If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power

I Maps seek distance to power and time

I Disk interpolates over entries in table

I Table set by periodic “thermal recalibration”

I But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things

I Time to seek 1/3 disk, 1/3 time to seek whole disk

20 / 38

Seek details

• Head switches comparable to short seeks

I May also require head adjustment

I Settles take longer for writes than for reads

If read strays from track, catch error with checksum, retry

If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power

I Maps seek distance to power and time

I Disk interpolates over entries in table

I Table set by periodic “thermal recalibration”

I But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things

I Time to seek 1/3 disk, 1/3 time to seek whole disk

20 / 38

Sectors

• Disk interface presents linear array of sectors

I Generally 512 bytes, written atomically (even if power failure)

• Disk maps logical sector #s to physical sectors

I Zoning–puts more sectors on longer tracks

I Track skewing–sector 0 pos. varies by track (why?)

I Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping

I Larger logical sector # difference means larger seek

I Highly non-linear relationship (and depends on zone)

I OS has no info on rotational positions

I Can empirically build table to estimate times

21 / 38

Sectors

• Disk interface presents linear array of sectors

I Generally 512 bytes, written atomically (even if power failure)

• Disk maps logical sector #s to physical sectors

I Zoning–puts more sectors on longer tracks

I Track skewing–sector 0 pos. varies by track (sequential access speed)

I Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping

I Larger logical sector # difference means larger seek

I Highly non-linear relationship (and depends on zone)

I OS has no info on rotational positions

I Can empirically build table to estimate times

21 / 38

Disk interface

• Controls hardware, mediates access

• Computer, disk often connected by bus (e.g., SCSI)

I Multiple devices may contentd for bus

• Possible disk/interface features:

• Disconnect from bus during requests

• Command queuing: Give disk multiple requests

I Disk can schedule them using rotational information

• Disk cache used for read-ahead

I Otherwise, sequential reads would incur whole revolution

I Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching

I But data not stable—not suitable for all requests

22 / 38

SCSI overview [Schmidt]

• SCSI domain consists of devices and an SDS

I Devices: host adapters & SCSI controllers

I Service Delivery Subsystem connects devices—e.g., SCSI bus

• SCSI-2 bus (SDS) connects up to 8 devices

I Controllers can have > 1 “logical units” (LUNs)

I Typically, controller built into disk and 1 LUN/target, but “bridge controllers” can
manage multiple physical devices

• Each device can assume role of initiator or target

I Traditionally, host adapter was initiator, controller target

I Now controllers act as initiators (e.g., copy command)

I Typical domain has 1 initiator, ≥ 1 targets

23 / 38

https://rcs.uwaterloo.ca/~ali/sched/readings/scsi.pdf

SCSI requests

• A request is a command from initiator to target

I Once transmitted, target has control of bus

I Target may disconnect from bus and later reconnect
(very important for multiple targets or even multitasking)

• Commands contain the following:

I Task identifier—initiator ID, target ID, LUN, tag

I Command descriptor block—e.g., read 10 blocks at pos. N
I Optional task attribute—simple, orderd, head of queue

I Optional: output/input buffer, sense data

I Status byte—good, check condition, intermediate, . . .

24 / 38

Executing SCSI commdns

• Each LUN maintains a queue of tasks

I Each task is dormant, blocked, enabled, or ended

I simple tasks are dormant until no ordered/head of queue

I ordered tasks dormant until no HoQ/more recent ordered

I HoQ tasks begin in enabled state

• Task management commands available to initiator

I Abort/terminate task, Reset target, etc.

• Linked commands

I Initiator can link commands, so no intervening tasks

I E.g., could use to implement atomic read-modify-write

I Intermediate commands return status byte intermediate

25 / 38

SCSI exceptions and errors

• After error stop executing most SCSI commands

I Target returns with check condition status

I Initiator will eventually notice error

I Must read specifics w. request sense

• Prevents unwanted commands from executing

I E.g., initiator may not want to execute 2nd write if 1st fails

• Simplifies device implementation

I Don’t need to remember more than one error condition

• Same mechanism used to notify of media changes

I I.e., ejected tape, changed CD-ROM

26 / 38

Disk performance

• Placement & ordering of requests a huge issue

I Sequential I/O much, much faster than random

I Long seeks much slower than short ones

I Power might fail any time, leaving inconsistent state

• Must be careful about order for crashes

I More on this in next two lectures

• Try to achieve contiguous accesses where possible

I E.g., make big chunks of individual files contiguous

• Try to order requests to minimize seek times

I OS can only do this if it has a multiple requests to order

I Requires disk I/O concurrency

I High-performance apps try to maximize I/O concurrency

• Next: How to schedule concurrent requests
27 / 38

Scheduling: FCFS

• “First Come First Served”

I Process disk requests in the order they are received

• Advantages

I Easy to implement

I Good fairness

• Disadvantages

I Cannot exploit request locality

I Increases average latency, decreasing throughput

28 / 38

Scheduling: FCFS

• “First Come First Served”

I Process disk requests in the order they are received

• Advantages

I Easy to implement

I Good fairness

• Disadvantages

I Cannot exploit request locality

I Increases average latency, decreasing throughput

28 / 38

FCFS example

29 / 38

Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)

I Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)

• Advantages

I Exploits locality of disk requests

I Higher throughput

• Disadvantages

I Starvation

I Don’t always know what request will be fastest

• Improvement?

I Give older requests higher priority

I Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

30 / 38

Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)

I Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)

• Advantages

I Exploits locality of disk requests

I Higher throughput

• Disadvantages

I Starvation

I Don’t always know what request will be fastest

• Improvement?

I Give older requests higher priority

I Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

30 / 38

Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)

I Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)

• Advantages

I Exploits locality of disk requests

I Higher throughput

• Disadvantages

I Starvation

I Don’t always know what request will be fastest

• Improvement: Aged SPTF

I Give older requests higher priority

I Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

30 / 38

SPTF example

31 / 38

“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed

I Like SPTF, but next seek must be in same direction

I Switch directions only if no further requests

• Advantages

I Takes advantage of locality

I Bounded waiting

• Disadvantages

I Cylinders in the middle get better service

I Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook
I (Textbook uses [C]SCAN to mean scan entire disk uselessly)

32 / 38

“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed

I Like SPTF, but next seek must be in same direction

I Switch directions only if no further requests

• Advantages
I Takes advantage of locality

I Bounded waiting

• Disadvantages

I Cylinders in the middle get better service

I Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook

I (Textbook uses [C]SCAN to mean scan entire disk uselessly)

32 / 38

CSCAN example

33 / 38

VSCAN(r)

• Continuum between SPTF and SCAN

I Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Teff = Tpos

Otherwise: Teff = Tpos + r · Tmax

I when r = 0, get SPTF, when r = 1, get SCAN

I E.g., r = 0.2 works well

• Advantages and disadvantages

I Those of SPTF and SCAN, depending on how r is set

• See [Worthington] for good description and evaluation of various disk
scheduling algorithms

34 / 38

http://www.ece.cmu.edu/~ganger/papers/sigmetrics94.pdf

Flash memory

• Today, people increasingly using flash memory

• Completely solid state (no moving parts)
I Remembers data by storing charge

I Lower power consumption and heat

I No mechanical seek times to worry about

• Limited # overwrites possible
I Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases

I Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to
logical block don’t wear out physical block

I FTL can seriously impact performance

I In particular, random writes very expensive [Birrell]

• Limited durability
I Charge wears out over time

I Turn off device for a year, you can easily lose data
35 / 38

http://research.microsoft.com/pubs/63681/TR-2005-176.pdf

Types of flash memory

• NAND flash (most prevalent for storage)

I Higher density (most used for storage)

I Faster erase and write

I More errors internally, so need error correction

• NOR flash

I Faster reads in smaller data units

I Can execute code straight out of NOR flash

I Significantly slower erases

• Single-level cell (SLC) vs. Multi-level cell (MLC)

I MLC encodes multiple bits in voltage level

I MLC slower to write than SLC

36 / 38

NAND Flash Overview

• Flash device has 2112-byte pages

I 2048 bytes of data + 64 bytes metadata & ECC

• Blocks contain 64 (SLC) or 128 (MLC) pages

• Blocks divided into 2–4 planes

I All planes contend for same package pins

I But can access their blocks in parallel to overlap latencies

• Can read one page at a time

I Takes 25 µs + time to get data off chip

• Must erase whole block before programing

I Erase sets all bits to 1—very expensive (2 msec)

I Programming pre-erased block requires moving data to internal buffer, then 200
(SLC)–800 (MLC) µs

37 / 38

Flash Characteristics [Caulfield’09]

Parameter SLC MLC

Density Per Die (GB) 4 8
Page Size (Bytes) 2048+32 2048+64
Block Size (Pages) 64 128

Read Latency (µs) 25 25
Write Latency (µs) 200 800
Erase Latency (µs) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0

38 / 38

http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf

