
CS350: Operating Systems

Lecture 6: System Calls and Interrupts

Ali Mashtizadeh

University of Waterloo

1 / 54

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

2 / 54

System Software StackSystem Call So�ware Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5

5 / 43

3 / 54

System Call Interface

System Calls: Application programmer interface (API) that
programmers use to interact with the operating system.

• Processes invoke system calls

• Examples: fork(), waitpid(), open(), close(), ...

• System call interface can have complex calls

I sysctl() Exposes operating system configuration

I ioctl() Controlling devices

• Need a mechanism to safely enter and exit the kernel

I Applications don’t call kernel functions directly!

I Remember: kernels provide protection

4 / 54

Privilege Modes

• Hardware provides multiple protection modes

• At least two modes:

I Kernel Mode or Privledged Mode – Operating System

I User Mode – Applications

• Kernel Mode can access privileged CPU features

I Access all restricted CPU features

I Enable/disable interrupts, setup interrupt handlers

I Control system call interface

I Modify the TLB (virtual memory ... future lecture)

• Allows kernel to protect itself and isolate processes

I Processes cannot read/write kernel memory

I Processes cannot directly call kernel functions

5 / 54

Mode Transitions

• Kernel Mode can only be entered through well
defined entry points

• Two classes of entry points provided by the processor:

• Interrupts

I Interrupts are generated by devices to signal needing
attention

I E.g. Keyboard input is ready

I More on this during our IO lecture!

• Exceptions:

I Exceptions are caused by processor

I E.g. Divide by zero, page faults, internal CPU errors

• Interrupts and exceptions cause hardware to transfer
control to the interrupt/exception handler, a fixed
entry point in the kernel. 6 / 54

Interrupts

• Interrupt are raised by devices

• Interrupt handler is a function in the kernel that services a device request

• Interrupt Process:

I Device signals the processor through a physical pin or bus message

I Processor interrupts the current program

I Processor begins executing the interrupt handler in privileged mode

• Most interrupts can be disabled, but not all

I Non-maskable interrupts (NMI) is for urgent system requests

7 / 54

Exceptions

• Exceptions (or faults) are conditions encountered during execution of a
program

I Exceptions are due to multiple reasons:

I Program Errors: Divide-by-zero, Illegal instructions

I Operating System Requests: Page faults

I Hardware Errors: System check (bad memory or internal CPU failures)

• CPU handles exceptions similar to interrupts

I Processor stops at the instruction that triggered the exception (usually)

I Control is transferred to a fixed location where the exception handler is located in
privledged mode

• System calls are a class of exceptions!

8 / 54

MIPS Exception Vectors

• Interrupts, exceptions and system calls use the same mechanism

• Some processors use a special path for system calls for performance (e.g., x86)

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load or store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Illegal instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

9 / 54

System Calls

• System calls are performed by triggering the EX_SYS exception:

1. Application loads the arguments into CPU registers

2. Load the system call number into register $v0

3. Executes syscall instruction to trigger EX_SYS exception

4. Kernel processes the system call through the exception handler

5. Returns to userspace using rfe, return from exception instruction

• Many processors include similar instructions (e.g., syscall in x86)

10 / 54

Hardware Handling in MIPS R3000 (Sys/161)

• Exception handlers in MIPS R3000 are at fixed locations

• Processor jumps to these addresses whenever an exception is encountered

I 0x8000_0000 User TLB Handler (virtual memory)

I 0x8000_0080 General Exception Handler

• TLB exceptions are frequent

I Handler is usually hand optimized assembly, unlike general exceptions

• Remember that 0x8000_0000–0x9FFF_FFFF:
I Mapped to the first 512MBs of physical memory

I Where the OS resides

11 / 54

Hardware Handling: the MIPS Coprocessor

• Kernel accesses exception and processor state through the MIPS coprocessor

I MIPS CP0: system control coprocessor

I MIPS CP1 floating point coprocessor

• System Control Coprocessor (CP0) contains exception handling information

I Use the mfc0/mtc0 (Move from/to co-processor 0) instructions

I c0_status: CPU status include kerner/user mode flag

I c0_cause: Cause of the exception
I c0_epc: Program counter (PC) where the exception occurred

I c0_vaddr: Virtual address associated with the fault

I c0_context: Used by OS/161 to store the CPU number

12 / 54

System Call Operation Details

• Application calls into the C library (e.g., calls write())

• Library executes the syscall instruction

• Kernel exception handler 0x8000_0080 runs
I Switch to kernel stack

I Create a trapframe which contains the program state

I Determine the type of exception

I Determine the type of system call

I Run the function in the kernel (e.g., sys_write())
I Restore application state from the trap frame

I Return from exception (rfe instruction)

• Library wrapper function returns to the application

13 / 54

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

14 / 54

How are values passed?

• Application Binary Interface (ABI) defines the contract
between functions an application and system calls.

• Operating Systems and Compilers must obey these
rules referred to as the calling convention

• MIPS + OS/161 Calling Convention

I System call number in v0
I First four arguments in a0, a1, a2, a3
I Remaining arguments passed on the stack

I Success/fail in a3 and return value/error code in v0

15 / 54

System Call Numbering

• System calls numbers defined in kern/include/kern/syscall.h

#define SYS_fork 0
#define SYS_vfork 1
#define SYS_execv 2
#define SYS__exit 3
#define SYS_waitpid 4
#define SYS_getpid 5
...

16 / 54

MIPS Calling Conventions

• Caller-saved registers are saved before calling another
function

I $t0–$t9: Temporary registers

I $a0–$a3: Argument registers

I $v0–$v1: Return values

• Callee-saved registers are saved inside the function

I $s0–$s7: Saved registers

I $ra: Return address

• Instructions:

I jal: Jump and link – Call function and save return
address in $ra

I jr $ra: Jump Register – Return from function
17 / 54

Functions in MIPS

• Review MIPS function calls

• Functions are called with the jal instruction

• jal: Jump-and-link, calls a function and saves the
return address in $ra

foo:
li $a0, 1

/* Save caller-save registers */

jal bar /* Call bar */
nop /* Delay slot */

/* Restore registers */

jr $ra /* Return */
nop /* Delay slot */

18 / 54

Functions in MIPS Continued

• Simple functions may not need to save any registers

• We save callee-saved registers if needed for performance

int bar(int a) {
return 41 + a;

}

bar:
li $v0, 41
add $v0, $v0, $a0

jr $ra
nop /* Delay slot */

19 / 54

Where are registers saved?

• Registers are saved in memory in the per-thread stack

• A stack frame is all the saved registers and local
variables that must be saved within a single function

• Our stack is made up of an array of stack frames

/* Push stack element */
subi $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

/* Pop stack element */
lw $t1, 4($sp)
lw $t2, 0($sp)
addi $sp, $sp, 8

20 / 54

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

21 / 54

Execution Contexts

Execution Context: The environment where functions execute including their
arguments, local variables, memory.

• Context is a unique set of CPU registers and a stack pointer

• Multiple execution contexts:
I Application Context: Application threads

I Kernel Context: Kernel threads, software interrupts, etc

I Interrupt Context: Interrupt handler

• Kernel and Interrupts usually the same context

• Context transitions:
I Context switch: a transitions between contexts

I Thread Switch: a transition between threads (in OS/161 between kernel contexts)

22 / 54

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers

• Programs begin execution at _start

_start frame

User Stack
23 / 54

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers

• Programs begin execution at _start

_start frame

main() frame

User Stack
24 / 54

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers

• Programs begin execution at _start

_start frame

main() frame

printf() frame

User Stack
25 / 54

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers

• Programs begin execution at _start

_start frame

main() frame

printf() frame

write() frame

User Stack
26 / 54

Application Stack
• Stack made of up frames containing locals, arguments, and spilled registers

• Programs begin execution at _start

_start frame

main() frame

printf() frame

write() frame

???

User Stack
27 / 54

Context Switch: User to Kernel
• trapframe: Saves the application context

• syscall instruction triggers the exception handler

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

Kernel Stack
28 / 54

Context Switch: User to Kernel
• trapframe: Saves the application context

• common_exception saves trapframe on the kernel stack!

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

Kernel Stack
29 / 54

Context Switch: User to Kernel
• trapframe: Saves the application context

• Calls mips_trap() to decode trap and syscall()

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

syscall()

Kernel Stack
30 / 54

Context Switch: User to Kernel
• trapframe: Saves the application context

• syscall() decodes arguments and calls sys_write()

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

syscall()

sys_write()

Kernel Stack
31 / 54

Context Switch: Returning to User Mode
• trapframe: Saves the application context

• sys_write() writes text to console

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

syscall()

sys_write()

console
driver

Kernel Stack
32 / 54

Context Switch: Returning to User Mode
• trapframe: Saves the application context

• Return from sys_write()

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

syscall()

sys_write()

Kernel Stack
33 / 54

Context Switch: Returning to User Mode
• syscall() stores return value and error in trapframe

• v0: return value/error code, a3: success (1) or failure

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

syscall()

Kernel Stack
34 / 54

Context Switch: Returning to User Mode
• mips_trap() returns to the instruction following syscall
• v0: return value/error code, a3: success (1) or failure

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

mips_trap()

Kernel Stack
35 / 54

Context Switch: Returning to User Mode
• common_exception restores the application context

• Restores all CPU state from the trapframe

_start frame

main() frame

printf() frame

write() frame

User Stack

common_exception
trapframe

Kernel Stack
36 / 54

Context Switch: Returning to User Mode
• write() decodes v0 and a3 and updates errno
• errno is where error codes are stored in POSIX

_start frame

main() frame

printf() frame

write() frame

User Stack Kernel Stack
37 / 54

Context Switch: Returning to User Mode
• errno is where error codes are stored in POSIX

• printf() gets return value, if -1 then see errno

_start frame

main() frame

printf() frame

User Stack Kernel Stack
38 / 54

Outline

1 Kernel API

2 Calling Conventions

3 System Calls

4 Switching Threads/Processes

39 / 54

Scheduling

• How to pick which process to run

• Scan process table for first runnable?

I Expensive. Weird priorities (small pids do better)

I Divide into runnable and blocked processes

• FIFO/Round-Robin?

I Put threads on back of list, pull them from front

(OS/161 kern/thread/thread.c)

• Priority?

I Give some threads a better shot at the CPU

40 / 54

Preemption

• Can preempt a process when kernel gets control

• Running process can vector control to kernel

I System call, page fault, illegal instruction, etc.

I May put current process to sleep—e.g., read from disk

I May make other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt

I If running process used up quantum, schedule another

• Device interrupt

I Disk request completed, or packet arrived on network

I Previously waiting process becomes runnable

I Schedule if higher priority than current running proc.

• Changing running process is called a context switch

41 / 54

Context switch

42 / 54

Context switch details

• Very machine dependent. Typical things include:

I Save program counter and integer registers (always)

I Save floating point or other special registers

I Save condition codes

I Change virtual address translations

• Non-negligible cost

I Save/restore floating point registers expensive
. Optimization: only save if process used floating point

I May require flushing TLB (memory translation hardware)
. HW Optimization 1: don’t flush kernel’s own data from TLB

. HW Optimization 2: use tag to avoid flushing any data

I Usually causes more cache misses (switch working sets)

43 / 54

Switching Processes: Timer Interrupt
• Starts with a timer interrupt or sleeping in a system call

• Interrupts user process in the middle of the execution

_start frame

main() frame

User Stack

common_exception
trapframe

Kernel Stack 1
44 / 54

Switching Processes: Timer Interrupt
• common_execution saves the trapframe

• mips_trap() notices a EX_IRQ from the Timer

_start frame

main() frame

User Stack

common_exception
trapframe

mips_trap()

Kernel Stack 1
45 / 54

Switching Processes: Timer Interrupt
• Calls mainbus_interrupt to handle the IRQ

• On many machines there are multiple IRQ sources!

_start frame

main() frame

User Stack

common_exception
trapframe

mips_trap()

mainbus_interrupt

Kernel Stack 1
46 / 54

Switching Processes: Timer Interrupt
• mainbus_interrupt reads the bus interrupt pins
• Determins the source, in this case a timer interrupt

_start frame

main() frame

User Stack

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

Kernel Stack 1
47 / 54

Switching Processes: Timer Interrupt
• Timers trigger processing events in the OS

• Most importantly, calling the CPU scheduler

_start frame

main() frame

User Stack

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

Kernel Stack 1
48 / 54

Switching Processes: CPU Scheduler
• thread_yield() calls into scheduler to pick next thread

• Calls thread_switch() to switch threads

_start frame

main() frame

User Stack

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

Kernel Stack 1
49 / 54

Switching Processes: Thread Switch
• thread_switch: saves and restores kernel thread state

• Switching processes is a switch between kernel threads!

_start frame

main() frame

User Stack

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

thread_switch

switchframe

Kernel Stack 1
50 / 54

Switching Processes: Thread Switch
• thread_switch saves thread state onto the stack

• switchframe: contains the kernel context!

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

thread_switch

switchframe

Kernel Stack 1

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

thread_switch

switchframe

Kernel Stack 2
51 / 54

Switching Processes: Thread Switch
• thread_switch restores thread state from the stack

• switchframe: contains the kernel context

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

thread_switch

switchframe

Kernel Stack 1

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

Kernel Stack 2
52 / 54

Switching Processes
• Returns from the device code

• mips_trap() returns

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

thread_switch

switchframe

Kernel Stack 1

common_exception
trapframe

mips_trap()

Kernel Stack 2
53 / 54

Switching Processes
• common_exception restores the trapframe

• trapframe: contains the application context!

common_exception
trapframe

mips_trap()

mainbus_interrupt

timer_interrupt

thread_yield

thread_switch

switchframe

Kernel Stack 1

common_exception
trapframe

Kernel Stack 2
54 / 54

	Kernel API
	Calling Conventions
	System Calls
	Switching Threads/Processes

