
CS350: Operating Systems

Lecture 7: Virtual Memory – Hardware

Ali Mashtizadeh

University of Waterloo

1 / 43



Want processes to co-exist

• Consider multiprogramming on physical memory
I What happens if emacs needs to expand?
I If emacs needs more memory than is on the machine??
I If emacs has an error and writes to address 0x7100?
I When does gcc have to know it will run at 0x4000?
I What if emacs isn’t using its memory?

2 / 43



Issues in sharing physical memory

• Protection
I A bug in one process can corrupt memory in another
I Must somehow prevent process A from trashing B’s memory
I Also prevent A from even observing B’s memory (ssh-agent)

• Transparency
I A process shouldn’t require particular physical memory bits
I Yes processes often require large amounts of contiguous memory (for stack, large data

structures, etc.)

• Resource exhaustion
I Programmers typically assume machine has “enough” memory
I Sum of sizes of all processes often greater than physical memory

3 / 43



Virtual memory goals

load

 

app.

kernel

virtual address
0x30408

MMU

Is address
legal?

Yes, phys. addr
0x92408

 
memorydata

NoTo fault handler

• Give each program its own “virtual” address space
I At run time, Memory-Management Unit relocates each load, store to actual memory. . . App

doesn’t see physical memory
• Also enforce protection

I Prevent one app from messing with another’s memory
• And allow programs to see more memory than exists

I Somehow relocate some memory accesses to disk
4 / 43



Virtual memory advantages

• Can re-locate program while running
I Run partially in memory, partially on disk

• Most of a process’s memory may be idle (80/20 rule).

 

gcc

kernel

 
idle idle

emacs

kernel

 

physical

memory

I Write idle parts to disk until needed
I Let other processes use memory of idle part
I Like CPU virtualization: when process not using CPU, switch

(Not using a memory region? switch it to another process)
• Challenge: VM = extra layer, could be slow

5 / 43



Idea 1: load-time linking

• Linker patches addresses of symbols like printf
• Idea: link when process executed, not at compile time

I Determine where process will reside in memory
I Adjust all references within program (using addition)

• Problems?

I How to enforce protection
I How to move once already in memory (Consider: data pointers)
I What if no contiguous free region fits program?

6 / 43



Idea 1: load-time linking

• Linker patches addresses of symbols like printf
• Idea: link when process executed, not at compile time

I Determine where process will reside in memory
I Adjust all references within program (using addition)

• Problems?
I How to enforce protection
I How to move once already in memory (Consider: data pointers)
I What if no contiguous free region fits program? 6 / 43



Idea 2: base + bound register

• Two special privileged registers: base and bound
• On each load/store:

I Physical address = virtual address + base
I Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?

I Change base register

• What happens on context switch?

I OS must re-load base and bound register

7 / 43



Idea 2: base + bound register

• Two special privileged registers: base and bound
• On each load/store:

I Physical address = virtual address + base
I Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
I Change base register

• What happens on context switch?

I OS must re-load base and bound register

7 / 43



Idea 2: base + bound register

• Two special privileged registers: base and bound
• On each load/store:

I Physical address = virtual address + base
I Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
I Change base register

• What happens on context switch?
I OS must re-load base and bound register

7 / 43



Definitions

• Programs load/store to virtual (or logical) addresses
• Actual memory uses physical (or real) addresses
• VM Hardware is Memory Management Unit (MMU)

I Usually part of CPU
I Accessed w. privileged instructions (e.g., load bound reg)
I Translates from virtual to physical addresses
I Gives per-process view of memory called address space

8 / 43



Address space

9 / 43



Base+bound trade-offs

• Advantages
I Cheap in terms of hardware: only two registers
I Cheap in terms of cycles: do add and compare in parallel
I Examples: Cray-1 used this scheme

• Disadvantages
I Growing a process is expensive or impossible
I No way to share code or data (E.g., two copies of

bochs)
• One solution: Multiple segments

I E.g., separate code, stack, data segments
I Possibly multiple data segments

10 / 43



Outline

1 Segmentation

2 Paging

3 MIPS: Software Managed MMU

4 Intel x86: Hardware MMU

11 / 43



Segmentation

• Let processes have many base/bound regs
I Address space built from many segments
I Can share/protect memory at segment granularity

• Must specify segment as part of virtual address
12 / 43



Segmentation mechanics

• Each process has a segment table
• Each VA indicates a segment and offset:

I Top bits of addr select segment, low bits select offset (PDP-10)
I Or segment selected by instruction or operand (means you need wider “far” pointers to specify

segment)
13 / 43



Segmentation example

0x4000

0x3000

0x2000

0x1500

0x1000
0x0700

0x0000

virtual physical

0x4700

0x3000

0x500

0x0000

0x4000

• 2-bit segment number (1st digit), 12 bit offset (last 3)
I Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

14 / 43



Segmentation trade-offs

• Advantages
I Multiple segments per process
I Allows sharing! (how?)
I Don’t need entire process in memory

• Disadvantages
I Requires translation hardware, which could limit performance
I Segments not completely transparent to program (e.g., default segment faster or uses shorter

instruction)
I n byte segment needs n contiguous bytes of physical memory
I Makes fragmentation a real problem.

15 / 43



Fragmentation

• Fragmentation → Inability to use free memory
• Over time:

I Variable-sized pieces = many small holes (external fragmentation)
I Fixed-sized pieces = no external holes, but force internal waste (internal fragmentation)

16 / 43



Outline

1 Segmentation

2 Paging

3 MIPS: Software Managed MMU

4 Intel x86: Hardware MMU

17 / 43



Paging

• Divide memory up into small pages
• Map virtual pages to physical pages

I Each process has separate mapping

• Allow OS to gain control on certain operations
I Read-only pages trap to OS on write
I Invalid pages trap to OS on read or write
I OS can change mapping and resume application

• Other features sometimes found:
I Hardware can set “accessed” and “dirty” bits
I Control page execute permission separately from read/write
I Control caching or memory consistency of page

18 / 43



Paging trade-offs

• Eliminates external fragmentation
• Simplifies allocation, free, and backing storage (swap)
• Average internal fragmentation of .5 pages per “segment”

19 / 43



Simplified allocation

emacsgcc memory

Disk

physical

• Allocate any physical page to any process
• Can store idle virtual pages on disk

20 / 43



Paging data structures

• Pages are fixed size, e.g., 4K
I Least significant 12 (log2 4K) bits of address are page offset
I Most significant bits are page number

• Each process has a page table
I Maps virtual page numbers (VPNs) to physical page numbers (PPNs)
I Also includes bits for protection, validity, etc.

• On memory access: Translate VPN to PPN,
then add offset

21 / 43



Example: Paging on PDP-11

• 64K virtual memory, 8K pages
I Separate address space for instructions & data
I I.e., can’t read your own instructions with a load

• Entire page table stored in registers
I 8 Instruction page translation registers
I 8 Data page translations

• Swap 16 machine registers on each context switch

22 / 43



MMU Types

• Memory Management Units (MMU) come in two flavors
• Software Managed

I Simplier hardware and asks software to reload pages
I Requires fast exception handling and optimized software
I Enables more flexiblity in the TLB (e.g. variable page sizes)
I Examples: MIPS, Sun SPARC, DEC Alpha, ARM and POWER

• Hardware Managed
I Hardware reloads TLB with pages from a page tables
I Typically hardware page tables are Radix Trees
I Requires complex hardware
I Examples: x86, ARM64, IBM POWER9+

23 / 43



Outline

1 Segmentation

2 Paging

3 MIPS: Software Managed MMU

4 Intel x86: Hardware MMU

24 / 43



Software Managed MMU: MIPS

• Hardware has 64-entry TLB
I References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged
I All of physical memory contiguously mapped in high VM
I Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient
I Two hardware registers reserved for it
I utlb miss handler can itself fault—allow paged page tables

• OS is free to choose page table format!
I Combination of hash tables, trees and list of VM regions (next lecture)

25 / 43



MIPS Memory Layout

FFFF FFFF

C000 0000

kseg2: Paged Kernel

BFFF FFFF
A000 0000 kseg1: Phys. Uncached

9FFF FFFF
8000 0000 kseg0: Phys. Cached


Kernel Memory

7FFF FFFF

0000 0000

useg: Paged User


User Memory

26 / 43



MIPS Translation Lookaside Buffer

• TLB Entries: 64 - 64-bit entries containing:
I PID: Process ID (tagged TLB)
I N: No Cache - disables caching for memory mapped I/O
I D: Writeable - makes the page writeable
I V: Valid
I G: Global - ignores the PID during lookups

3233343536373839404142434445464748495051525354555657585960616263

Frame Number (VPN) PID

012345678910111213141516171819202122232425262728293031

Physical Page Number (PPN) N D V G

• Page Sizes: Multiples of 4 from 4 kiB–16 MiB
I 4 kiB, 16 kiB, 64 kiB, 256 kiB, 1 MiB, 4 MiB, 16 MiB

27 / 43



TLB PID and Global Bit

• Process ID (PID) allows multiple processes to coexist
I We don’t need to flush the TLB on context switch
I By setting the process ID
I Only flush TLB entries when reusing a PID
I Current PID is stored in c0_entryhi

• Global bit
I Used for pages shared across all address spaces in kseg2 or useg
I Ensures the TLB ignores the PID field
I Typically in most hardware a TLB flush doesn’t flush global pages

28 / 43



TLB Instructions

• MIPS co-processor 0 (COP0) provides the TLB functionality
I COP0 provides most privileged functionality

• Four instructions:
I tlbwr: TLB write a random slot
I tlbwi: TLB write a specific slot
I tlbr: TLB read a specific slot
I tlbp: Probe the slot containing an address

• For each of these instructions you must load the following registers
I c0_entryhi: high bits of TLB entry
I c0_entrylo: low bits of TLB entry
I c0_index: TLB Index

29 / 43



Hardware Lookup Exceptions

• TLB Exceptions:
I UTLB Miss: Generated when the accessing useg without matching TLB entry
I TLB Miss: Generated when the accessing kseg2 without matching entry
I TLB Mod: Generated when writing to read-only page

• UTLB handler is seperate from general exception handler
I UTLBs are very frequent and require a hand optimized path
I 64 entry TLB with 4 kiB pages covers 256 kiB of memory
I Modern machines have workloads with far more memory
I Require more entries (expensive hardware) or larger pages

30 / 43



Hardware Lookup Algorithm

1. If most significant bit (MSB) is 1 and in user mode → address error exception

2. If no VPN match → TLB/UTLB miss exception

3. If PID mismatches and global bit not set → TLB/UTLB miss

4. If valid bit not set → TLB/UTLB miss

5. Write to read-only page → TLB mod(ification) exception

6. If N bit is set directly access device memory (disable cache)

31 / 43



Outline

1 Segmentation

2 Paging

3 MIPS: Software Managed MMU

4 Intel x86: Hardware MMU

32 / 43



Hardware Managed MMU: x86

• TLB Managed by Hardware and Microcode
I Two levels of TLBs each acting as a cache
I Typical: a 1K entry TLB and 512 entry TLB
I TLB acts as a cache page table structure
I TLB automatically reloaded from page table
I Missing in the page tables result in page faults

• OS builds a Radix-tree describing memory layout
I Control register %cr3 points to radix-tree root

• 32-bit mode uses two level radix tree
I 1024 entries per level with page sizes 4 KiB or 4 MiB

• 64-bit mode
I 512 entries per level with page sizes of 4 KiB, 2 MiB, 1 GiB
I Four levels by default, newer chips support 5 levels

33 / 43



x86 Paging

• Paging enabled by bits in a control register (%cr0)
I Only privileged OS code can manipulate control registers

• Normally 4KB pages
• %cr3: points to 4KB page directory
• Page directory: 1024 PDEs (page directory entries)

I Each contains physical address of a page table
• Page table: 1024 PTEs (page table entries)

I Each contains physical address of virtual 4K page
I Page table covers 4 MB of Virtual mem

• See intel manual for detailed explanation
I Volume 2 of AMD64 Architecture docs
I Volume 3A of Intel Pentium Manual

34 / 43

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


x86 Page Translation

*32 bits aligned onto a 4-KByte boundary

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

1024 PDE × 1024 PTE = 220 Pages

35 / 43



x86 Page Directory Entry

)

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d )

P a g e s iz e (0 in d ic a te s 4 K B y te s )

R e s e rv e d (s e t to 0 )

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite - th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e -Ta b le B a s e A d d re ss

P a g e -D i r e c t o r y E n t r y (4 -K B y t e P a g e Ta b l e

36 / 43



x86 Page Table Entry

t

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write-Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Table En ry (4-KByte Page)

P
A
T

G

37 / 43



x86 Hardware Segmentation

• x86 architecture also supports segmentation
I Segment register base + pointer val = linear address
I Page translation happens on linear addresses

• Two levels of protection and translation check
I Segmentation model has four privilege levels (CPL 0–3)
I Paging only two, so 0–2 = kernel, 3 = user

• Implementation Details
I Segments defined through descriptors (similar IDTs)
I Two descriptor tables: GDT (global) and LDT (local – usually per process)
I Bonus: TSS used by interrupts is also a descriptor in the GDT
I Segment registers: %cs (code), %ds (data), %ss (stack), %fs/%gs (cpu/thread local data)

• x86-64 keeps segmentation offsets for %fs/%gs
I Early AMD64’s kept segmentation for virtualization
I Now: Offset set using model specific registers MSR_FSBASE/MSR_GSBASE

38 / 43



Why have segmentation and paging?

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
I Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it
I x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
I VMware runs guest OS in CPL 1 to trap stack faults
I OpenBSD used CS limit for W∧X when no PTE NX bit

39 / 43



Why have segmentation and paging?

• Why do you want both paging and segmentation?
• Short answer: You don’t – just adds overhead

I Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff
in all segment registers, then forget about it

I x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
I VMware runs guest OS in CPL 1 to trap stack faults
I OpenBSD used CS limit for W∧X when no PTE NX bit

39 / 43



Making Paging Fast

• x86 PTs require 3 memory references per load/store
I Look up page table address in page directory
I Look up PPN in page table
I Actually access physical page corresponding to virtual address

• For speed, CPU caches recently used translations
I Called a translation lookaside buffer or TLB
I Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
I Each TLB entry maps a VPN → PPN + protection information

• On each memory reference
I Check TLB, if entry present get physical address fast
I If not, walk page tables, insert in TLB for next time

(Must evict some entry)

40 / 43



TLB details

• TLB operates at CPU pipeline speed → small, fast
• Complication: what to do when switch address space?

I Flush TLB on context switch (e.g., old x86)
I Tag each entry with associated process’s ID (e.g., MIPS)

• In general, OS must manually keep TLB valid
• E.g., x86 invlpg instruction

I Invalidates a page translation in TLB
I Must execute after changing a possibly used page table entry
I Otherwise, hardware will miss page table change

• More Complex on a multiprocessor (TLB shootdown)

41 / 43



Where does the OS live?

• In its own address space?
I Can’t do this on most hardware (e.g., syscall instruction won’t switch address spaces)
I Also would make it harder to parse syscall arguments passed as pointers

• So in the same address space as process
I Use protection bits to prohibit user code from writing kernel

• Typically all kernel text, most data at same VA in every address space
I On x86, must manually set up page tables for this
I Usually just map kernel in contiguous virtual memory when boot loader puts kernel into

contiguous physical memory
I Some hardware puts physical memory (kernel-only) somewhere in virtual address space

42 / 43



Paging in day-to-day use

• Paging Examples
I Demand paging
I Growing the stack
I BSS page allocation
I Shared text
I Shared libraries
I Shared memory
I Copy-on-write (fork, mmap, etc.)

• Next time: detailed discussion on operating system side

43 / 43


	Segmentation
	Paging
	MIPS: Software Managed MMU
	Intel x86: Hardware MMU

