CS350 : Operating Systems

General Assignment Information

1 Introduction

Assignments in CS350 are based on OS/161 (0s161) running on System/161 (sys161). System/161 is a work-
station simulation, and OS/161 is a simple operating system for the simulated workstation. The assignments
require you to enhance the OS/161 operating system. For each assignment, you will be given a set of gen-
eral requirements describing the enhancements that must be made. You are to design, implement, test and
document changes to OS/161 that will satisfy the requirements. You will also be required to demonstrate
that your system behaves as required by providing readable and comprehensive testing documentation.

2 Using Systems/161 and OS/161

System/161 and OS/161 are available in the CSCF Unix environment. To use them you must first install
them in your account. Please read the installation instructions on the course web page and follow them
carefully.

You may work on your implementation on machines outside of the CSCF environment. In particular, see
the course web page for information about running System/161 and OS/161 on other machines. However,
to receive credit for your implementation work, your code must compile and execute correctly
in the CSCF environment. It is your responsibility to ensure that it does so.

The course web page also contains important information about using OS/161, about working in groups
and sharing files in the CSCF environment, and about OS/161 itself: how the machine works, how the
operating system is organized, and what it is capable of doing. Please read it.

3 Project Groups

After assignment 0, you may work on these assignments alone, or in groups of up to three students. Assign-
ment 0 must be done individually. You are responsible for completing the assignments whether you have
partners or not. The requirements are the same in either case. If you choose to work with partners, they
need not be in the same section as you.

If you want a partner and do not have one, you may wish to try posting a “partner wanted” message on
the course newsgroup.

If you work in a group, you must apply to us for a Unix group identifier. Apart from being just an
administrative requirement, this will also help members of your group to share files. See the course web page
(under Working in Groups) for information about various ways of sharing files in a Unix environment.

Choosing your group and obtaining a Unix group name is Assignment Oa. Follow the Assignment Oa
instructions on the course web page.

4 What to Submit

For some assignments you are expected to submit the following items (each assignment will clearly specify
what is to be submitted):

Design document (3 pages maximum)

Testing document (3 pages maximum)
It is not acceptable to “trade” testing document pages for design document pages, or vice versa. For
example, it is not OK to submit a four page design document if your testing document is only two
pages long. Each document has a three page limit.



Code
Your OS/161 code and test programs. Do a make clean in your OS/161 build directory (kern/-
compile/ASSTX where ASSTX is the appropriate assigment) before submitting your code. There is no
point to including all of those .o files and executables in your submission, since we are going to rebuild
your system anyways.

Your design and testing documents must be submitted in PDF format. There are a variety of
ways to create PDF documents. Here are some options:

e If you prepare your document using LaTeX, you can create PDF directly by using pdflatex to compile
your LaTeX source document.

e If you use OpenOffice to prepare your documents, you can export PDF versions of the document
directly from the OpenOffice menus.

e You can create plain text documents using your favorite text editor. You can then use the a2ps
command to convert your text files to Postscript. You can then use ps2pdf to convert the Postscript
document to PDF.

e From many other applications, you can print your document to a file, which should produce a Postscript
version of the document. You can then convert this to PDF using ps2pdf.

Please test your PDF documents to ensure that they can be read in the CSCF teaching environment. The
program acroread (Adobe Acrobat Reader) can be used to read PDF documents.

All of these items (both documents and your code) are to be submitted electronically, using the submit
program. More information about submitting the assignment can be found in Section 5

4.1 Design Document

There is a hard limit of three pages for this document. Use a readable font, at least 10 point. Longer
documents submitted to us will simply be truncated after three pages.

Your design document should provide an overview of the changes you have made to OS/161 to support
the assignment requirements. Write your document for an audience that already understands operating
systems in general, OS/161 in particular, and the assignment requirements. Assume your readers will be
asking how? and why?, and provide answers to these types of questions. Your document should explain how
each of the assignment requirements were addressed in your system.

Your design document should discuss and justify design decisions that you made. Sometimes one is forced
to make decisions to solve certain problems and other times one makes a design decision in anticipation of
future extensions and demands on your code. Your document should identify the strengths, weaknesses and
limitations of your design.

If your design does not address some of the requirements, those that are not supported should be noted
explicitly. Finally, if your system implements features other than the required ones, your document should
describe the extra features, and should explain how they were implemented.

Your design document should not include program code, class definitions, or lists of function or method
prototypes. It should be self-contained. The markers should be able to determine whether your design
addresses all of the assignment requirements without having your code in front of them. Your design
document should not include a restatement of the assignment or any portion of the assignment.

You may find it helpful to have at least an outline of your design document prepared for your group
before beginning heavy coding. This way your group members have a better idea of what their tasks are,
and your group can coordinate its efforts more effectively. Also, if you write your design first in English, you
may find it easier to implement it in C, rather than the other way around.

NOTE: your group is responsible for ensuring that the design document matches the im-
plementation and visa versa. Any description of features or designs that are implied to be
implemented but are not actually implemented will be treated as a case of academic dishonesty
It is acceptable (and encouraged) to explain the design for unimplemented features provided
that it is clearly and explicitly stated which features were not implemented.



4.2 Testing and the Testing Document

For some assingments, you are required to provide a set of user test programs to demonstrate the functionality
of your OS/161 system. The assigments will clearly state when you need to include test cases. Some test
programs are included with OS/161 but you are expected to augment them with your own tests. User space
test programs are normally located in the testbin directory in the installed OS/161 distribution. Kernel
space test programs are normally located in the kern/test directory and can be invoked from the kernel
boot menu (for some assignments you should add new test options to the menu to invoke new test functions
that you’ve added to kern/test. Your test programs should be submitted electronically along with the rest
of your OS/161 code.

The purpose of the tests is to demonstrate to the markers that your system satisfies the assignment
requirements, and that it is robust. We do not expect 100% test coverage of your implementation but we
do expect you to do a reasonable job of designing tests that will convince us that your implementation is
correct. Your tests should cover the main features of your design. You should also include stress tests that
demonstrate the stability of your system, e.g, by running concurrent processes that make a variety of system
calls.

When you design and implement tests, remember their purpose, and remember your target audience -
the markers. Clear, simple, and meaningful tests with succinct output are good. Verbose, overly long, or
confusing tests are not good. These tests are the primary means by which you demonstrate your implemen-
tation to the markers. Doing a great job on implementing your system and a bad job designing tests is a
mistake, since you may fail to get credit for your implementation efforts.

Here are a few guidelines for designing and implementing your tests:

e Be smart about your testing. If the test program is more than 3 or 4 pages long it is likely too long. If
the output produced by program is more than a page or two, it is probably too verbose. Think about
the number of different things that need to be tested and how much time it will take to look at the
output (imagine that you are the marker).

e The source for the test programs should be clear, concise, and documented with comments about what
the program does and about the expected return values for system calls.

e The test program should be bug free. Take some time when writing the test program to ensure that it
is correct. Too often people waste a bunch of time trying to fix their system when in fact the system
is fine but there is a bug in the test program (or they misunderstand how the test works or the return
values that are expected).

e Output a simple message if the tests fail or succeed. Better yet only print output if unexpected results
are obtained and when the program ends.

e Someone should be able to spend about 1 minute looking at the output of each test program to
determine whether all of the tests in the program failed or succeeded.

e Use multiple test programs to test different aspects of your system.

e Test special cases. Ideally a production quality operating system should be completely bullet proof.
No user program, even malicious ones, should be able to crash the system. In this course your system
doesn’t have to be that strong but there should not be GLARING holes.

e Check the return values of function and system calls. That is, check that the call has completed
successfully. If it has not, then handle the error intelligently.

In addition to your test programs, you are expected to produce a testing document. There is a hard
limit of three pages for this document. Longer documents will be truncated at three pages.

This document will be used as a guide by the markers when they are running your tests. It should include
at least the following:



e A description of how to build and run your test programs. Keep it simple, e.g., arrange that your test
programs can all be built by running make in an appropriate OS/161 directory (e.g., cd ~/cs350-0s161/-
0s161-1.11/ourtests; make; make install). If your tests are difficult or time consuming to initi-
ate, provide scripts to drive the tests.

e A brief description of the purpose and methodology of each of your test programs. What does it test,
and how does it test?

e If necessary, guidelines for interpreting the output of your tests. Keep in mind that the entire testing
document must be very short. By making your test output clear and self-explanatory, you can minimize
the amount of interpretive guidance that you need to provide in your testing document.

4.3 Code

When the assignment requires it, you are to submit a complete and self-contained copy of OS/161, modified
as described in your design document to meet the assignment requirements. This should include both the
0S/161 code itself, as well as the user (test) programs you have written. We will build your submitted code,
and then use your system to run your test programs (and possibly in some cases our test programs).

5 Submitting Your Work

Your design and testing documents must be submitted in PDF format. Your design document must be in a
PDF file named design.pdf. Your testing document must be in a PDF file named testing.pdf. Both of
these files should be placed in the top level directory of the copy of OS/161 that you plan to submit. The
top level directory is the one that contains bin, include , kern, 1ib, sbin, testbin, and a few others.

To submit your code, your design document, and your testing document, use the submit command.
When you run this command, you should be in the top level directory of the copy of OS/161 that you wish
to submit. For example, to submit assignment one, you would use the command:

cd ~/cs350-0s161 submit ¢s350 1 os161-1.11

The first command assumes that you’ve installed the 0s161 source in “/cs350-o0s161. In the submit
command, cs350 is the course for which you are submitting, the 1 is the assignment number, and the
“0s161-1.11" refers to the directory where the 0s161 code lives. For more information on the use of the
submit command, type man submit . Assuming that you have placed design.pdf and testing.pdf in the
top level OS/161 directory as required, this single call to the submit command will submit both your code
and your documents.

Please do a make clean in your OS/161 build directory (kern/compile/ASSTX where ASSTX is the appro-
priate assigment) before submitting your code. This will remove .o files and similar compiler waste products
(we will recompile your code on our own).

6 Marking

For each assignment your mark will be based on your design and your implementation. The cover sheet for
each assignment summarizes the mark breakdown for that assignment.

The implementation portion of your mark will be determined by the execution of test programs - yours
and possibly ours. Your test programs are the primary means of evaluation. Therefore, it is very important
for you to design and document tests that are meaningful and clear. We may design and run our own tests
against your system, in that case some portion of the implementation marks will be determined by such
tests.

There will be no implementation marks for code that does not run or that cannot be tested. This means
that you should implement and test one part of the system at a time, rather than doing all the implementation
first and leaving the testing until the end.



The design portion of your mark will be determined by your design document. You can receive design
marks for designing a particular feature even if that feature has not been implemented. (Remember, however,
that your design document should clearly identify design features that have not been implemented.)

Your design and testing documents are expected to be well-organized and clearly written. Your code,
including your testing code, is expected to be well-structured, commented and readable.

6.1 Academic Dishonesty (a.k.a. cheating)

You are encouraged to discuss the course assignments with people outside of your group and to use the
course newsgroup for such discussions. Nevertheless, each group is expected to do its own detailed
design, to prepare its own documentation and to do its own implementation and testing. For
example, it is okay to discuss why OS/161 (as given to you) behaves in a certain way, or why you cannot
get it to compile, or how to use its debug mode, or what a semaphore is, or the differences between two
paging algorithms, or the problems that arise when a multi-threaded process is terminated. It is not okay to
share the OS/161 code that implements process termination or the design documentation that describes it.
It is the responsibility of each group to ensure that its on-line code and documentation are protected from
general access. A good guideline is to leave pencils and paper (and their electronic equivalents) behind if
you discuss the assignments with other groups.

Plagiarizing text or copying code from students who have taken this course during previous terms or
from students at other universities is also academic dishonesty, and will be treated as such. Keep in mind
that although the CS350 assignments are similar from term to term, there are often changes. Sometimes the
changes are subtle. OS/161 itself changes too. To discourage cheating, we archive student submissions from
previous terms and use software to compare these to the current submissions from the current term.

Any incidents of cheating that we detect will be reported to the Associate Dean (Undergraduate Studies)
of the student’s faculty. The standard penalty for cheating is a grade of 0% on the assignment, if it is a first
offense and a reduction in the final grade of 5%. For example, cheating on an assignment that is worth 10%
of the final mark will lower your mazimum final mark in the course from 100 to 85.

This can make it very difficult to pass the course. Note that if you are caught cheating you are not
permitted to drop the course and will be re-enrolled automatically. Penalties for second offenses are generally
much stiffer, e.g., suspension from the University.

In every term students are students caught cheating on assignments. In past
terms, nearly all of them have ended up failing the course.



