
Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

A Brief C Primer for CS 350

Tyler Szepesi

University of Waterloo
stszepes@uwaterloo.ca

May 7, 2015

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Overview

1 Introduction

2 Data Types
I Structs
I Enums
I Pointers
I Arrays
I Strings

3 Volatile Variables

4 File Manipulation
I Writing Files
I Reading Files

5 Memory
I Stack
I Heap
I Endianness

6 Conclusion

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Introduction

Welcome to the CS 350 C Primer tutorial!

Why will we be using C for assignments in CS 350?

• C is flexible and gives the programmer total control.

• C is light-weight at its core, making it simple to use and easy
to understand (usually).

• C gives you control over underlying memory management.

• And most importantly of all...

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Why C?

(a) Using C to code. (b) Using other languages to code.

A scientific and unbiased comparison of C with other languages.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Data Types

Data types in C define several things about data:

• The size of data.

• How the data is represented in memory.

• The legal operations that can be performed on the data.

This course uses a 32-bit version of MIPS:

• signed/unsigned char = 1 byte

• signed/unsigned short = 2 bytes

• signed/unsigned int = 4 bytes

• signed/unsigned long = 4 bytes

• signed/unsigned long long = 8 bytes

• Pointers of any type = 4 bytes

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Data Types

Warning!

There is no bool in classic C! Non-zero values are true, and zero
values are false. Newer versions of C have bool, true and
false macros (see stdbool.h), as does the OS/161 code base,
but in some environments you may have to define your own if you
wish to use them.

Warning!

Data type sizes vary by system! There are only very loose
guarantees on minimum sizes for data types in C, as well as what
types are larger than others. You should usually avoid relying on
platform-specific details (like data type sizes), or at least
sanity-check them using the sizeof keyword!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Structs

Structs are special types in C:

• Structs are comprised of other data types called members.

• The size of a struct depends on the size of its member types.

• Members of a struct are accessed using the ‘.’ operator.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Structs

struct foo {

int x;

char a, b, c, d;

};

int main(int argc, char** argv) {

struct foo bar;

bar.x = 1; // Assigning a value to a struct’s member

bar.a = 2;

printf("%d\n", (int)sizeof(bar));

return 0;

}

This sample prints “8” and terminates.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Structs

Structs are usually laid out according to the way they are defined.
In the previous example:

• The first 4 bytes are reserved for int x.

• The remaining 4 bytes are given to the four char variables.

Warning!

Your struct’s size will NOT always be the summed total of its
members’ sizes! Compilers often pad structs and align values to
memory addresses. It is always good practice to use the sizeof

keyword instead of relying on your own guesswork!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Structs

struct foo {

char x;

int y;

};

int main(int argc, char** argv) {

struct foo bar;

printf("%d\n", (int)sizeof(bar));

return 0;

}

This sample will likely print “8” and terminate.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Structs

It’s kind of annoying to have to type struct every time you wish
to declare one. The typedef keyword allows you to shortcut this
by declaring a custom type:

typedef struct {

int x, y;

} foo;

int main(int argc, char** argv) {

foo bar;

return 0;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Enums

Often, programmers wish to categorize things into specific types.
The enum type provided by C helps give this capability:

• Enumerated types are simply dressed-up integer values.

• Enumerated types provide both compiler safety and
optimization for operations involving items with different
categories.

• An enum in C is often used in conjunction with a switch

statement. These statements are often compiler-optimized
into jump tables when many values are present, and can
sometimes be more efficient than using if-else statements.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Enums

enum fruit {

BANANA,

ORANGE

};

void eat_fruit(enum fruit my_fruit) {

switch (my_fruit) {

case BANANA:

case ORANGE:

printf("Yum, healthy!\n"); break;

default:

printf("Item was probably a donut.\n"); break;

}

return;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Enums

Enums can be given explicit values if desired:

enum colours {

RED = 1,

ORANGE = 2,

YELLOW = 4,

GREEN = 8,

BLUE = 16,

INDIGO = 32,

VIOLET = 64

};

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Enums

Like structs, enums can be made easier to use with typedef:

typedef enum {

DOG,

SHARK

} animal;

void check_animal(animal my_animal) {

if (my_animal == DOG) {

pet(my_animal);

} else {

run_from(my_animal);

}

return;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

Pointers are C’s method of allowing the programmer to directly
manipulate memory:

• Pointers are variables that contain a memory address.

• The data contained at the address is inferred by the pointer
type:

• int* int ptr: A pointer to an int.
• foo* foo ptr: A pointer to a foo.
• void* ptr: A generic pointer with no particular type.
• int** int ptr ptr: A pointer to a pointer to an int.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

Warning!

The position of the * in a pointer declaration is irrelevant, but you
may start a minor war based on your decision. Although foo*
my foo, foo * my foo and foo *my foo are all equivalent, the
suggested style (and the one used by the Linux kernel) is foo
*my foo. Just be sure to stay consistent!

Warning!

Be VERY careful when declaring multiple pointers on the same
line. The * in a declaration only applies to the particular variable it
is attached to.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

A bad declaration of multiple int*’s:

int* foo, bar, foobar;

Properly declaring multiple int*’s:

int* foo, * bar, * foobar;

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

Pointers can be assigned in a variety of ways:

• Grabbing the address of a variable with the ‘&’ operator:

int foo = 1;

int* bar = &foo;

• Casting other numerical values:

int* foo = (int*)0xFFFF0000;

unsigned int bar = 0xFFFF0000;

int* foobar = (int*)bar;

• Using a predefined macro like NULL (which is equal to 0):

int* foo = NULL;

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

Remember, a pointer contains an address of a value, not the value
itself. We can examine the address itself if desired:

printf("0x%x\n", foo); // Will print "0xFFFF0000"

To examine the value that resides at the address a pointer points
to, use the dereference operator ‘*’:

printf("%d\n", *bar); // Will print "1"

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

Pointers are particularly useful for “passing by reference”:

• Parameters are normally passed by value.

• Passing a pointer allows the programmer to manipulate the
original variable from within a function.

void foo(int* bar) {

*bar = *bar + 1;

}

int main(int argc, char** argv) {

int bar = 0;

foo(&bar);

printf("%d\n", bar); // Will print "1"

return 0;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

Pointers are very useful for passing structs around:

• Structs are passed by value by default.

• Passing by reference is more efficient and allows you to modify
a struct from anywhere!

foo my_foo;

foo* foo_ptr = &my_foo;

do_something(&my_foo);

• When accessing the members of a struct via a pointer, the ‘.’
operator annoyingly takes precedence over the ‘*’ operator:

*foo_ptr.x = 0; // Wrong!

(*foo_ptr).x = 0; // Right!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Pointers

• To avoid issues with operator precedence and members of
structs passed by reference, C has the ‘->’ operator.

(*foo_ptr).x = 0; // Right!

foo_ptr->x = 0; // Also right!

• Remember, pointers can be made for any type of memory,
including enums and other pointers!

• The void pointer is a pointer that represents a memory
containing untyped data. Often void pointers are used to
work with multiple different types of data or memory buffers.

• Because char* points to memory divided into bytes, it too is
often used to work with memory buffers.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Arrays

Arrays are collections of elements of a single type:

int foo[32];

• This example creates an array of 32 integers.

• The total size occupied by an array is sizeof (type) *
num elements.

• Elements are accessed using the ‘[]’ operator.

• The elements of an array are laid out contiguously in memory.

• If the address of foo[0] is 0x10, then the address of foo[1]
would be 0x14.

Arrays may be of any type, including structs and enums:

struct foo bar[32];

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Arrays

In C, arrays are managed with pointer arithmetic:

• The variable name of the array is, in reality, just the memory
address of the first element of the array (in other words,
&foo[0] is equal to foo).

• Using the ‘[]’ operator actually does the following:

int foo[32];

int bar1 = foo[8];

int bar2 = *(foo + 8); // Identical to bar1

int bar3 = *((int*)(((unsigned int)foo) + sizeof(int) * 8));

// Identical to bar1

• This is why arrays are zero-based in C.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Arrays

Warning!

An common pitfall arises from forgetting that pointers use pointer
arithmetic. Also common is improper casting when manipulating
pointers. Use explicit casting and brackets when in doubt.

Warning!

Pointers and arrays are similar, but NOT identical. Declaring a
pointer allocates memory to store an address. Declaring an array
only allocates for the elements, meaning the array variable itself
cannot be mutated. Using ‘&’ on a pointer results in a pointer to a
pointer. Using ‘&’ on an array simply results in the same value as
the array variable!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Arrays

The similarities between pointers and arrays, and C’s deference of
memory management responsibility to the programmer enables
some cool tricks:

typedef struct {

int x;

int y;

} foo;

int main(int argc, char** argv) {

char bar[sizeof(foo) * 32]; // bar is an array of char

foo* foobar = (foo*)bar; // Treat bar as an array of foo

int* barfoo = (int*)bar; // Treat bar as an array of int

return 0;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Arrays

Warning!

Be very cautious when using sizeof with arrays. Running sizeof

on an array declared locally inside a function will return the total
byte size of all elements contained in an array. Running sizeof on
a pointer to the same array, however, will return the size of a
pointer! Even more confusing, passing an array as an argument to
a function only actually passes a pointer to the array. It is almost
ALWAYS more useful to write functions that accept pointers as
arguments instead of arrays, as this is more faithful to what is
actually happening behind the scenes.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Arrays

Typed “dynamic arrays” are also provided as data structures in
OS/161 (through some macro-based black magic):

• Great for storing data if you don’t know how many items
you’ll need to accommodate up front (i.e. no reasonable
upper bound).

• ...And that’s about it.

Warning!

Don’t use a dynamic array when a regular one would suffice. If you
know how many items you need to store, or you have a reasonable
upper bound, use a C array. This will improve your performance,
and greatly reduce the strain on your sanity.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Strings

In C, strings are simply arrays of type char:

• Strings end with the NULL character, ’\0’ (equal to 0).

• A string can be allocated locally on the stack:

char foo[] = "Hello World!";

// {‘H’,‘e’,‘l’,‘l’,‘o’,‘ ’,‘W’,‘o’,‘r’,‘l’,‘d’,‘!’,‘\0’}

// foo[1] == ‘e’, foo[12] == ‘\0’

printf("%c\n", *foo); // Prints out "H"

• Strings can also be declared as constants (or literals):

char* foo = "Hello World!";

• Literals are stored in the bss section of the executable file.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Strings

Remember that a pointer can be directed to point at any memory
address at all, making something like the following possible:

char foo[] = "Hello World!";

char* bar = foo;

// foo[i] and bar[i] are now the same for any i

// sizeof(foo) and sizeof(bar) are still different

You can even declare strings to be larger than their contents:

char foo[] = "Hello World!";

char bar[13] = "Hello World!"; // foo and bar are identical

char foobar[20] = "Hello World!"; // Has 7 uninitialized bytes

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Strings

Don’t forget to properly treat C strings like arrays of characters:

int bad_comparison(const char* foo) {

return (foo == "This is a dumb thing to do.");

}

The above comparison will NOT do the right thing. Use a library
call like strncmp instead.

Warning!

NEVER use an unbounded string function like strcmp when a
bounded version such as strncmp exists. Unless you like
introducing security exploits for hackers to abuse. If so, go ahead.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Volatile Variables

When compiling a program in C, the compiler performs a variety of
tricks to optimize your code:

• This can include re-writing code, eliminating variables and
even removing code sections altogether!

• Declaring a variable as volatile disables value-based
optimizations by the compiler on that variable.

• In particular, value folding and dead code elimination will not
be performed.

• This is extremely important if a variable’s memory can be
changed without the compiler realizing it:

• Variables that can be changed from multiple threads.
• Memory-mapped variables that can be changed by hardware.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Volatile Variables

A compiler can often change something like this...

int foo() {

int bar = 0;

for (i = 0; i < 10; i += 1) {

bar += i;

}

return bar;

}

...into this:

int foo() {

return 45;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Volatile Variables

To prevent the compiler from making these changes, we simply
need to make bar into a volatile variable:

int foo() {

volatile int bar = 0;

for (i = 0; i < 10; i += 1) {

bar += i;

}

return bar;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Volatile Variables

Consider a more urgent example:

unsigned int foo; // foo is memory-mapped

void wait_foo() {

foo = 0;

while (foo != 255);

}

This could be optimized into the following code:

unsigned int foo; // foo is memory-mapped

void wait_foo() {

foo = 0;

while (1);

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Volatile Variables

Again, the fix is to make our variable volatile:

volatile unsigned int foo; // foo is memory-mapped

void wait_foo() {

foo = 0;

while (foo != 255);

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

File Manipulation

C allows for direct interaction with and manipulation of files:

• People are often intimidated by file manipulation in C, but
once you’re used to using it, it’s just as easy as file
manipulation in any other language.

• Open files in C are dealt with through file descriptors,
numbers which represent open files and allow you to interact
with them.

• Your main tools when interacting with files will be the open,
close, read and write system calls.

• All of these calls are very well-documented online.

• If you don’t close open files you can run out of file descriptors!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Writing Files

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

int main(int argc, char** argv) {

int i, rc, fd;

unsigned int buf[40];

for (i = 0; i < 40; i+= 1) {

buf[i] = i;

}

fd = open("test-output", O_CREAT | O_WRONLY, S_IRWXU);

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Writing Files

if (fd < 0) {

printf("Couldn’t open file!\n");

exit(1);

}

rc = write(fd, buf, sizeof(buf));

if (rc < 0) {

printf("Couldn’t write to file!\n");

exit(1); // Should really close fd before doing this

}

close(fd); // Should check the return code of this

exit(0);

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Reading Files

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

#define PER_ROW 4

int main(int argc, char** argv) {

int i, rc, fd;

unsigned int buf[40];

if ((fd = open("test-output", O_RDONLY)) < 0)

exit(1);

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Reading Files

if ((rc = read(fd, buf, sizeof(buf))) < 0) {

exit(1); // Should really perform cleanup here

}

for (i = 0; i < 40; i += 1) { // Should use rc and sizeof

if (i % PER_ROW == 0) {

printf("offset = %4d : ", i * sizeof(unsigned int));

}

printf("0x%08x ", buf[i]);

if ((i + 1) % PER_ROW == 0) {

printf("\n");

}

}

close(fd);

exit(0);

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Reading Files

offset = 0 : 0x00000000 0x00000001 0x00000002 0x00000003

offset = 16 : 0x00000004 0x00000005 0x00000006 0x00000007

offset = 32 : 0x00000008 0x00000009 0x0000000A 0x0000000B

offset = 48 : 0x0000000C 0x0000000D 0x0000000E 0x0000000F

offset = 64 : 0x00000010 0x00000011 0x00000012 0x00000013

offset = 80 : 0x00000014 0x00000015 0x00000016 0x00000017

offset = 96 : 0x00000018 0x00000019 0x0000001A 0x0000001B

offset = 112 : 0x0000001C 0x0000001D 0x0000001E 0x0000001F

offset = 128 : 0x00000020 0x00000021 0x00000022 0x00000023

offset = 144 : 0x00000024 0x00000025 0x00000026 0x00000027

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Memory

Programs typically touch three distinct areas of memory:

• The stack, consisting of local variables determined at compile
time.

• The heap, consisting of dynamic memory allocated at
run-time.

• Global data, consisting of values loaded from the binary.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Stack

The stack is one of the most basic sections of memory:

• Both local variables and function arguments are allocated on
the stack.

• The stack grows downwards on MIPS and most other systems.

• Stack spaces are handed out by the OS to threads.

• As functions are called, new stack frames are created by
moving the stack pointer downwards.

• As functions return, the stack is unwound by reversing the
stack pointer.

• Room created on the stack for variables is uninitialized by
default (even for structs and arrays).

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Stack

Every variable in the following example is located on the stack:

void foo (int bar) {

int foobar;

return;

}

Warning!

It is entirely possible to run out of space on the stack. By default,
most OS’s will give you “only” a few megabytes of stack space!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Stack

Warning!

One of the most common and basic mistakes you can make is to
reference uninitialized variables, structs and array elements (e.g.
using ‘+=’ with an uninitialized integer, or assuming pointers are
initialized to NULL). Get in the habit of initializing everything, and
zero out entire structures or arrays if you have to!

Warning!

It is a critical mistake to reference stack variables from outside of
their context. Passing variables downwards to functions is fine, but
don’t try to pass pointers to parameters or stack variables upwards!
Don’t even think about doing it!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Stack

Don’t ever do this:

int* foo1 (int* bar) {

int foobar = *bar;

return &foobar; // This is almost certainly wrong!

}

int* foo2() {

int bar = 0;

int* foobar;

foobar = foo1(&bar); // Passing bar downwards is fine

return foobar; // Normally fine, but wrong because of foo1

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Heap

Sometimes we can’t know at compile time exactly how much
memory we need. This is where dynamic memory comes in handy:

• Dynamic memory is issued from an area called the heap which
is managed by the operating system.

• The heap is typically much larger than the stack by default.

• Storage is requested from the heap using the malloc system
call which accepts a size (in bytes) and returns a pointer to a
block of heap memory.

• Unlike the stack, no automatic unwinding ever occurs for the
heap. When you’re finished with heap memory it must be
returned to the OS using the free system call.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Heap

Warning!

Calling malloc can return NULL if no memory is available!

Warning!

Like the stack, heap memory is uninitialized. Don’t forget to
initialize the memory your heap-based pointers point to!

Warning!

If you forget to return heap memory to the OS (for example in
error cases), you will encounter memory leaks! This forgotten
memory won’t be available for use until the program terminates!

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Heap

Sample heap usage:

int* foo() {

int* bar = (int*)malloc(sizeof(int));

*bar = 1;

return bar;

}

int main(int argc, char** argv) {

int* bar;

bar = foo();

printf("%d\n", *bar); // Will print out "1"

free(bar); // May be a good idea to set bar = NULL after

return 0;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Heap

Warning!

Once you’ve called free on a block of memory, there’s no telling
what it points to. It is now a dangling pointer. You should be
extremely careful not to use this pointer again until it is reassigned
to another value. Good practice may even be to manually set it to
NULL when you are done with it!

Warning!

Calling free on the same pointer twice is dangerous! Although
free on a NULL pointer does nothing at all, calling free on a bad
memory address or one that has already had free called on it
causes undefined behaviour. Undefined behaviour is bad, precisely
101 times out of 100.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Heap

Using free in good and bad ways:

void good(int** foo) {

free(*foo);

*foo = NULL; // Kind, brave people code like this

return;

}

void bad(int** foo) {

free(*foo);

free(*foo); // Fools and charlatans code like this

bar(*foo); // Convicted war criminals code like this

return;

}

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Endianness

Endianness is an important consideration when working with C on
various platforms:

• Endianness defines byte orders in memory.

• Intel’s x86 architecture uses little endian semantics.

• Little endian means least significant bytes come first.

• System/161 uses big endian semantics.

• Big endian means most significant bytes come first, and is
what you are logically used to.

Little endianness is a legacy of older processors, as it was slightly
more efficient for some mathematical operations and also requires
fewer instructions for casting values.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Endianness

Here are what bytes look like in little and big endian:

unsigned int x = 0xDEADBEEF;

Little endian: Least significant byte at lowest address

0 .. 7 8 .. 15 16 .. 23 24 .. 31

[EF] [BE] [AD] [DE]

Big endian: Most significant byte at lowest address

0 .. 7 8 .. 15 16 .. 23 24 .. 31

[DE] [AD] [BE] [EF]

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Endianness

Here is what the sample from file reading looks like when dumped
on a little endian system:

offset = 0 : 0x00000000 0x01000000 0x02000000 0x03000000

offset = 16 : 0x04000000 0x05000000 0x06000000 0x07000000

offset = 32 : 0x08000000 0x09000000 0x0A000000 0x0B000000

offset = 48 : 0x0C000000 0x0D000000 0x0E000000 0x0F000000

offset = 64 : 0x10000000 0x11000000 0x12000000 0x13000000

offset = 80 : 0x14000000 0x15000000 0x16000000 0x17000000

offset = 96 : 0x18000000 0x19000000 0x1A000000 0x1B000000

offset = 112 : 0x1C000000 0x1D000000 0x1E000000 0x1F000000

offset = 128 : 0x20000000 0x21000000 0x22000000 0x23000000

offset = 144 : 0x24000000 0x25000000 0x26000000 0x27000000

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

General Tips

A few generic tips for programming success:

• Use external resources.

• Use tools to help you when possible! Valgrind and GDB can
save your life. Cscope and Ctags will save you time!

• Learn to use the C pre-processor. It is fairly powerful.

• Initialize all your variables that need to be initialized.

• Check the return code of every single system call that returns
a value. Otherwise, you are asking for problems.

• Modularize, comment, and write clean and consistent code.

• Compile and test frequently on expected inputs and outputs.

• Use source control. This is “not optional”.

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

Useful Resources

• The Linux man pages.

• System calls are in chapter 2 (e.g. man 2 open).
• Library calls are in chapter 3 (e.g. man 3 strncpy).
• Searchable and hyperlinked man pages: linux.die.net/

• Wikipedia.

• Various “pitfalls of C” and “expert C tricks” pages.

• Bit Twiddling Hacks:
graphics.stanford.edu/~seander/bithacks.html

• Beej’s Guide to Network Programming:
beej.us/guide/bgnet/

linux.die.net/
graphics.stanford.edu/~seander/bithacks.html
beej.us/guide/bgnet/

Introduction Data Types Volatile Variables File Manipulation Memory Conclusion

The End

Congratulations! You’re on your way to becoming an expert C
programmer! Everyone will want to use your OS!

Questions?

	Introduction
	Data Types
	Structs
	Enums
	Pointers
	Arrays
	Strings

	Volatile Variables
	File Manipulation
	Writing Files
	Reading Files

	Memory
	Stack
	Heap
	Endianness

	Conclusion

