
NachOS 101

Bradford Hovinen

David Pariag

School of Computer Science

University of Waterloo

18 January 2004

0-0



Outline

1. Installing and Building NachOS

2. NachOS Directory and File Structure

3. NachOS Architecture

4. NachOS Executable Files and Address Space

5. Debugging Tips

6. Collaboration Strategies

7. Assignment Submission Information

8. Design Document

9. Testing Strategies

10. Testing Document

1



Installing and Building NachOS

� When you know your group number, make sure every group

member creates a directory ~/cs350 <group> where <group>

is your group number.

� From the CS student environment, use install nachos to

install NachOS in your account

� Go to code/build solaris and type make to build NachOS

� NachOS should compile and run on GNU/Linux as well; use

the directory code/build linux

� Make sure you have your assignment running on the CS

student environment before submitting.

2



NachOS Directory and File Structure

code/filesys Filesystem (used in A3)

code/lib Library routines

code/machine MIPS simulator and simulated hardware

code/network Networking (don’t worry about this)

code/test Test suite (put your tests here)

code/threads Heart of the kernel – scheduler, etc.

code/userprog Support for user-level processes

3



NachOS Architecture
� NachOS kernel is a normal (UNIX-level) process

� Processes under NachOS are run by the MIPS simulator

� By “kernel-level” we refer to the NachOS kernel

� By “user-level” we refer to processes running under NachOS

� NachOS kernel has a complete threading library

� Each (user-level) thread under NachOS has a corresponding

kernel-level thread

� Thus each (user-level) thread under NachOS has two sets of

registers and two stacks: one under the MIPS simulator and

one at the kernel level

� Be careful about which entity you’re talking about!

4



NachOS Architecture (cont)

Kernel Simulator

Registers

Page Tables

Memory

Program
User

Program
User

Address Space

Code

Stack

Data

Thread

Kernel−level Registers

Kernel−level Stack

User−level Registers

Thread

Kernel−level Registers

Kernel−level Stack

User−level Registers

NachOS (A Unix process)

5



NachOS Architecture (cont)
� MIPS Simulator runs as a main event loop, invoked with

Machine::Run

� Kernel code gets called from the simulator through (simulated)

exceptions and interrupts

� Interrupts cause the simulator to call the appropriate interrupt

handler

� Exceptions and system calls cause the simulator to call the

exception handler

(userprog/exception.cc:ExceptionHandler)

� Returning from the interrupt handler or exception handler

returns control to the simulator

� Machine::Run gets called once per thread – you should not call

it yourself

6



NachOS Architecture (cont)
� Kernel stack space is limited – don’t allocate huge items on the

stack

� The NachOS kernel is not preemptible – interrupts can only

happen from within the simulator

MIPS Simulator Process under
NachOS

Exception Handler Interrupt Handler

Your Code Your Code Scheduler

7



NachOS Executable Files and Address Space
� NachOS uses an executable format called NOFF

� NOFF file is divided into sections:

– .code

The program instructions that the simulator will execute

– .initdata

The initialised data that hold predefined variable values

(e.g. static int a = 20;)

– .uninitdata

Uninitialised data; these are not read from the file but are

initialised to zero by the kernel (e.g. static int a;)

– .rdata

Read-only data (e.g. char *tmp = ‘‘My String’’;)

8



NachOS Executable Files and Address Space (cont.)
� NachOS user programs are linked to COFF format using a

linking script that forces sections to be page-aligned

� A program (distributed with NachOS) called coff2noff

converts the COFF file to a NOFF file

� Current address space layout is as follows:

0

Code Read−only
data

Init
data

Stack (fixed size defined in
userprog/addrspace.h:UserStackSize)Uninit data

� You may need to modify this layout in future assignments

� If you change the way a program loads (e.g. adding dynamic

loading in A2), you should make sure that each of these

sections still works.

9



Debugging Tips

� NachOS programming involves C and C++ – be aware of the

memory model!

� Most segmentation faults and bus errors are the result of

memory allocation problems

� Warning: There are things you can do in Java but not C or

C++

10



Debugging Tips (cont)

Examples of bad code:

char *f() {

char array[20];

// Do something with array

return array;

}

char *f() {

char *s;

strcpy (s, "My text");

return s;

}

11



Debugging Tips (cont.)
� Learn GDB! (see

http://www.gnu.org/software/gdb/documentation/)

� If that’s too scary, learn DDD! (see

http://www.gnu.org/software/ddd/)

� If you see a crash in new or delete, you probably corrupted the

memory allocator data structures (e.g. you walked off the end

of an array, used memory that was already freed, etc.)

� On GNU/Linux systems, you can debug memory problems

with Electric Fence (see http://perens.com/FreeSoftware)

� Also, look at Valgrind (see http://valgrind.kde.org/)

� We’re seeing if we can get these and Purify on

CSCF-administered machines

� If the above fail, see the TAs/instructors

12



Collaboration Strategies

� You need to share files among your group members

� Best way is to use CVS: see

http://www.student.cs.uwaterloo.ca/~cs350/W04/

common/cvs.html

� We recommend against copying files between group members,

creating symlinks, giving all group members write access to the

project directory, etc.

� Be careful about the account you use to submit the assignment

– don’t submit the wrong code!

13



Assignment Submission Information

Be careful about permissions – make sure cs350asst.zip is

world-readable and its directory and all ancestors are

world-executable!

The commands to do this are as follows:

In the directory where your assignment submission is located:

chmod o+r cs350asst.zip

Then, for that directory and all of its ancestors (back to your home

directory):

chmod o+x .

Remember: That zip file is the only copy of your assignment.

� Do not modify or remove it after submitting it.

� Do not use the submission script after the deadline until after

the assignment has been marked.

14



Design Document
� We (the TAs) are looking for answers to specific questions

about your design

� We will tell you many of the questions we have for each

assignment

� Divide your document into sections corresponding to the cover

sheet

� Do the same with your one-page revision

� Avoid rambling, restating the obvious, etc.

� Proofread your document – TAs may deduct marks for

grammar/spelling/usage errors!

15



Testing Strategies
� Scour the assignment description for every required behaviour.

E.g. Such-and-such system call should return foo on success

and bar on failure

� Think of all the ways a process can send invalid data to the

kernel

E.g. Create(NULL);

� Think of how the different components of the OS interact

E.g. Read or Write across page boundaries

� Think of different scenarios

E.g. A given page is not in memory

16



Testing Strategies (cont)

� Test limits that exist on your system

E.g. A filename cannot be more than n characters long

E.g. A process cannot have more than m files open at one time

Note that, in any practical situation, some limits must exist.

You should define them clearly, document them, and test them.

� Try to write some “stress-tests”

Remember: Marks for testing and implementation are separate! So

you can get marks for testing something that isn’t working or even

implemented.

17



Testing Document

� We want to know two things

1. How to run your tests

2. What each test is testing

� Write your tests to be self-explanatory when run so you don’t

need a lot of external documentation

� In the document, a table layout is recommended

� Try to break your document down according to the sections in

the cover sheet

18


