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Installing and Building NachOS

� When you know your group number, make sure every group

member creates a directory ~/cs350 <group> where <group>

is your group number.

� From the CS student environment, use install nachos to

install NachOS in your account

� Go to code/build solaris and type make to build NachOS

� NachOS should compile and run on GNU/Linux as well; use

the directory code/build linux

� Make sure you have your assignment running on the CS

student environment before submitting.
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NachOS Directory and File Structure

code/filesys Filesystem (used in A3)

code/lib Library routines

code/machine MIPS simulator and simulated hardware

code/network Networking (don’t worry about this)

code/test Test suite (put your tests here)

code/threads Heart of the kernel – scheduler, etc.

code/userprog Support for user-level processes
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NachOS Architecture
� NachOS kernel is a normal (UNIX-level) process

� Processes under NachOS are run by the MIPS simulator

� By “kernel-level” we refer to the NachOS kernel

� By “user-level” we refer to processes running under NachOS

� NachOS kernel has a complete threading library

� Each (user-level) thread under NachOS has a corresponding

kernel-level thread

� Thus each (user-level) thread under NachOS has two sets of

registers and two stacks: one under the MIPS simulator and

one at the kernel level

� Be careful about which entity you’re talking about!
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NachOS Architecture (cont)
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NachOS Architecture (cont)
� MIPS Simulator runs as a main event loop, invoked with

Machine::Run

� Kernel code gets called from the simulator through (simulated)

exceptions and interrupts

� Interrupts cause the simulator to call the appropriate interrupt

handler

� Exceptions and system calls cause the simulator to call the

exception handler

(userprog/exception.cc:ExceptionHandler)

� Returning from the interrupt handler or exception handler

returns control to the simulator

� Machine::Run gets called once per thread – you should not call

it yourself
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NachOS Architecture (cont)
� Kernel stack space is limited – don’t allocate huge items on the

stack

� The NachOS kernel is not preemptible – interrupts can only

happen from within the simulator

MIPS Simulator Process under
NachOS

Exception Handler Interrupt Handler

Your Code Your Code Scheduler
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NachOS Executable Files and Address Space
� NachOS uses an executable format called NOFF

� NOFF file is divided into sections:

– .code

The program instructions that the simulator will execute

– .initdata

The initialised data that hold predefined variable values

(e.g. static int a = 20;)

– .uninitdata

Uninitialised data; these are not read from the file but are

initialised to zero by the kernel (e.g. static int a;)

– .rdata

Read-only data (e.g. char *tmp = ‘‘My String’’;)
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NachOS Executable Files and Address Space (cont.)
� NachOS user programs are linked to COFF format using a

linking script that forces sections to be page-aligned

� A program (distributed with NachOS) called coff2noff

converts the COFF file to a NOFF file

� Current address space layout is as follows:

0

Code Read−only
data

Init
data

Stack (fixed size defined in
userprog/addrspace.h:UserStackSize)Uninit data

� You may need to modify this layout in future assignments

� If you change the way a program loads (e.g. adding dynamic

loading in A2), you should make sure that each of these

sections still works.
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Debugging Tips

� NachOS programming involves C and C++ – be aware of the

memory model!

� Most segmentation faults and bus errors are the result of

memory allocation problems

� Warning: There are things you can do in Java but not C or

C++
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Debugging Tips (cont)

Examples of bad code:

char *f() {

char array[20];

// Do something with array

return array;

}

char *f() {

char *s;

strcpy (s, "My text");

return s;

}
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Debugging Tips (cont.)
� Learn GDB! (see

http://www.gnu.org/software/gdb/documentation/)

� If that’s too scary, learn DDD! (see

http://www.gnu.org/software/ddd/)

� If you see a crash in new or delete, you probably corrupted the

memory allocator data structures (e.g. you walked off the end

of an array, used memory that was already freed, etc.)

� On GNU/Linux systems, you can debug memory problems

with Electric Fence (see http://perens.com/FreeSoftware)

� Also, look at Valgrind (see http://valgrind.kde.org/)

� We’re seeing if we can get these and Purify on

CSCF-administered machines

� If the above fail, see the TAs/instructors
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Collaboration Strategies

� You need to share files among your group members

� Best way is to use CVS: see

http://www.student.cs.uwaterloo.ca/~cs350/W04/

common/cvs.html

� We recommend against copying files between group members,

creating symlinks, giving all group members write access to the

project directory, etc.

� Be careful about the account you use to submit the assignment

– don’t submit the wrong code!
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Assignment Submission Information

Be careful about permissions – make sure cs350asst.zip is

world-readable and its directory and all ancestors are

world-executable!

The commands to do this are as follows:

In the directory where your assignment submission is located:

chmod o+r cs350asst.zip

Then, for that directory and all of its ancestors (back to your home

directory):

chmod o+x .

Remember: That zip file is the only copy of your assignment.

� Do not modify or remove it after submitting it.

� Do not use the submission script after the deadline until after

the assignment has been marked.
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Design Document
� We (the TAs) are looking for answers to specific questions

about your design

� We will tell you many of the questions we have for each

assignment

� Divide your document into sections corresponding to the cover

sheet

� Do the same with your one-page revision

� Avoid rambling, restating the obvious, etc.

� Proofread your document – TAs may deduct marks for

grammar/spelling/usage errors!
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Testing Strategies
� Scour the assignment description for every required behaviour.

E.g. Such-and-such system call should return foo on success

and bar on failure

� Think of all the ways a process can send invalid data to the

kernel

E.g. Create(NULL);

� Think of how the different components of the OS interact

E.g. Read or Write across page boundaries

� Think of different scenarios

E.g. A given page is not in memory

16



Testing Strategies (cont)

� Test limits that exist on your system

E.g. A filename cannot be more than n characters long

E.g. A process cannot have more than m files open at one time

Note that, in any practical situation, some limits must exist.

You should define them clearly, document them, and test them.

� Try to write some “stress-tests”

Remember: Marks for testing and implementation are separate! So

you can get marks for testing something that isn’t working or even

implemented.

17



Testing Document

� We want to know two things

1. How to run your tests

2. What each test is testing

� Write your tests to be self-explanatory when run so you don’t

need a lot of external documentation

� In the document, a table layout is recommended

� Try to break your document down according to the sections in

the cover sheet
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