P	lease	print in Student ID	n pen: Number	r:		
W	/atIAM/C	Quest Logi	in Userid		•	

Times: Wednesday 2019-10-30 at 19:00 to 20:50 (7 to 8:50PM)

Duration: 1 hour 50 minutes (110 minutes)

Exam ID: 4232838

Sections: CS 350 LEC 001-003

Instructors: Ali Mashtizadeh, Lesley Ann Istead

Examination Midterm Fall 2019 CS 350

Closed Book

Candidates may bring no aids (no calculators).

University of Waterloo CS350 Midterm Examination

Fall 2019

Student Name:		

Closed Book Exam
No Additional Materials Allowed
The marks for each question add up to a total of 95

1. (14 total marks) True or false.

(a) Disabling interrupts is sufficient to provide mutual exclusion in all situations.
(b) volatile offers mutual exclusion on a variable.
(c) An OS/161 lock is a mutex.
(d) A semaphore's counter can be negative.
(e) A process that is ready, blocked, or running must have at least one thread.
(f) When a thread is forked (created), it is given a new address space by the kernel.
(g) yield guarantees a context switch to a different thread.
(h) The kernel uses the same stack as the user program.
(i) In OS/161 user applications can directly call sys_fork.
(j) System calls can be interrupted.
(k) Unprivileged instructions can be executed by the CPU while it is in privileged mode.
(l) Dynamic relocation suffers from fragmentation.
(m) Processes can only communicate to each other using sockets.
(n) Page tables only contain valid entries.

2. (6 total marks) Short Answer Part 1

a.	(2 marks) Efficiency Which is typically faster and why:
	i Printing the numbers from 1 to 1000000, one number at a time.
	ii Creating a string with the numbers from 1 to 1000000 and printing that string.
	Answer:
	Justification:
b.	(2 marks) Threads Why do threads have a user and a kernel stack?
	Answer:
c.	(2 marks) Processes What are the benefits of using multiple processes to perform a task instead of multiple threads?
	Answer:

3. (6 total marks) Short Answer Part 2

a.	2 marks) System calls In OS/161, waitpid can only be called on your child process. When is it safe to reuse a PID in OS/161?
	Answer:
b.	(2 marks) Semaphores What is a barrier semaphore used for? Give an example (text) of a situation where it might be used
	Answer:
c.	(2 marks) System Calls The system call kill is used to terminate a process by PID. Should an arbitrary user or process be able to kill another process? If yes, explain why. If no, suggest which users and processes should be
	able to kill another process.
	Answer:

4.	(6 total marks) Threads	ı
	Draw and label a thread state diagram that shows how threads move from one state to anothe	r.

5. (5 marks)

Wait morphing is a technique used to improve the performance of certain synchronization primitives. It works by moving a thread from one wait queue directly to another without having to wake up, only to go to sleep immediately on another resource. Give the pseudocode for cv_signal that uses wait morphing. You may assume that wait channels have a public unlock, push, and pop function in addition to those provided by OS/161.

6.	(12)	marks)

Draw the user and kernel stack for an OS/161 process that is preempted while executing sys_fork. The interrupt handler for the clock is called timer_interrupt_handler.

7. (15 marks)	
Consider a system that uses single-level paging for virtual memory with 32 bit physical and vir addresses. Suppose page size $16 \text{KB} (2^{14} \text{ bytes})$.	rtua
(a) (1 mark) How many pages of virtual memory are there?	
(b) (1 mark) How many frames of physical memory are there?	
(c) (1 mark) How many bits are needed for the page offset?	
(d) (1 mark) How many bits are needed for the page number?	

7 (continued).		
(e) (1 mark) A process uses a contiguous 2 ²⁰ bytes of memory for its address space. If entries will the page table have?	How n	nany valio
(f) (10 marks) What is the page number for each of the following virtual addresses? If scribed in (e) uses virtual addresses $[0, 2^{20})$, which of these addresses will be valid?	the p	process de
(i) 0x5555 5555		
(ii) 0xEA5E 0ACE		
(iii) 0x0000 1000		
(iv) 0x0000 ABCD		
(v) 0x0005 EEEE		

8. (4 marks)

Consider the following implementation of try_acquire, which returns false instead of blocking when the lock is not available, and true otherwise. Does the implementation work? If yes, explain why. If no, fix it.

```
bool try_acquire( lock *lk ) {
   if ( lk->owner != NULL ) return false;
   else lock_acquire( lk->owner );
   return true;
}
```

9. (10 marks)

Program A is executed. Draw the process tree. In each node, indicate what program is running and what value will be passed to _exit.

```
// Program A:
int x = 5;
int main() {
    int pid = fork();
    if ( pid == 0 ) {
        x = 2;
        execv( "B", "2" ); }
    else {
        waitpid( pid );
        _exit( x );
    }
}
// Program B:
int x = 0;
int main( int argv, char ** argc ) {
    int pid = fork();
    if ( pid == 0 ) execv( "B", "1" );
    else _exit( x );
    _exit( 1 );
}
```

10. (11 marks) Suppose that when a process forks, instead of creating a completely new address space, the child process will initially share the code and data sections of the parents address space to save time/memory. Suppose also that the processes use paged virtual memory. However, both parent and child processes should state be isolated.
(a) (2 marks) At what point would the two processes not be able to share pages of the code segment
the address space?

(b) (3 marks) At what point would the two proceses not be able to share a given page of the data segment

(c) (2 marks) How would the OS detect a write to a page that is shared?

in the address space?

(d) (4 marks) List the steps taken by the OS to resolve a process writing to a shared page.

11. (6 marks)

Consider the following pseudocode:

```
int array_sum( int * array, int n ) {
      if ( n == 0 ) return array[n];
      return array[n - 1] + array_sum( array, n - 1 );
}
int main(int argv, char ** argv) {
    int pid = fork();
    if ( pid == 0 ) {
        // 0 < argv[0] < 1000
        int * array = malloc( atoi( argv[0] ) * sizeof( int ) );
        for ( int i = 0; i < atoi( argv[0] ); i ++ ) array[i] = i % 3;</pre>
        int sum = array_sum( array, atoi( argv[0] ) );
        for ( int i = 0; i < sum; i ++ ) printf( \%d\n", i );
        _exit(0);
    }
    else {
        if ( waitpid( pid, ... ) )
            _exit(0);
    }
    return 0;
}
```

Improve the performance of this code. The output of the program must remain the same. You may use a function append_num(char *txt, int num), which appends num to the end of txt such that each number is separated by a newline.