
CS350	Midterm	 Spring	2012	 Page	1	

 UNIVERSITY OF WATERLOO
CS 350 MIDTERM :: SPRING 2012

Date: Monday, June 25, 2012
Time: 7:00 – 8:50 pm
Instructor: Dave Tompkins
Exam Type: Closed book
Additional Materials Allowed: none

 	

Last Name: SOLUTION

First Name: ____________________________

Student #: __ __ __ __ __ __ __ __

UW Login: __ __ __ __ __ __ __ __

Signature: ____________________________

INSTRUCTIONS

1. Before you begin, make certain that you have one exam
booklet with 8 pages (double sided)

2. All solutions must be placed in this booklet.
3. If you need to make an assumption to answer a question,

state your assumption clearly.
4. When writing code, you should use C or C-like

pseudocode. You do not have to worry about
#include statements or semi-colons.

5. If you need more space, use the last page, and indicate
that you have done so in the original question.

6. A big gap after a question does not necessarily mean
that a long answer is expected.

7. Did you see in the marking guide there's a bonus
question? woo-hoo! Make sure you answer it at the end.

8. Relax! Read this instruction as often as needed.

Question Out Of AVG

1 10 6.2

2 15 9.5

3 5 4.1

4 16 9.0

5 12 10.6

6 4 2.4

7 18 5.8

8 20 11.6

 Bonus 0.9

Total 100 60.0

CS350	Midterm	 Spring	2012	 Page	2	

Question	1	[10	Marks]	
	
(a)	[3	Marks]		In	OS/161	there	is	a	struct thread	to	represent	a	thread	context	and	
a	struct trapframe	to	represent	a	trap	frame.		Describe	something	that	is	contained	
in	both	structures,	and	then	for	each	of	the	structures	describe	something	that	it	
contains	that	the	other	does	not.		Briefly	explain	why	each	of	the	3	things	you	describe	
appears	where	it	does.		
	
	
Almost ALL registers are stored in a trap frame when a trap
occurs (interrupt/syscall/exception), but only a subset are
backed up when a thread context switch occurs. So (for
example) s1 would be in both, but temp register t0 would only
be in the trapframe. The thread context also has thread-
specific information, such as the base of the kernel stack,
the thread name, cwd, etc.
	
	
	
	
	
	
	
	
(b)	[2	Marks]		On	the	MIPS	+	OS/161	system,	explain	why		a++ 	is	not	considered	an	
atomic	operation,	yet		V(s)	is.	
	
	
a++ is really 3 separate assembler instructions (load, add,
store) and an interrupt could occur in-between them.
Within V(), interrupts are disabled so it cannot be
interrupted.	
	
	
	
	
	 	

CS350	Midterm	 Spring	2012	 Page	3	

	(c)	[3	Marks]	What	behaviour	does	a	lock	have	that	a	binary	semaphore	does	not?		
Briefly	describe	a	situation	where	you	would	prefer	a	lock	and	a	situation	where	you	
would	prefer	a	binary	semaphore.	
	
* a lock ensures that it can only be released by the thread
that acquired it.
* Use a lock to surround a critical section of code and you
want a guarantee that no other thread can unlock.
* You can use a semaphore for much more. For example you can
enforce 2 threads execute in a specific order (eg: thread A
waits for thread B).	
	
	
	
	
	
	
	
	
	
	
	
	
(d)	[2	Marks]		Explain	what	this	line	of	code	is	doing	and	why:	
	
mips_syscall(struct trapframe *tf) {
 ...
 tf->tf_epc += 4; <---- explain this line
 ...
}

* when a system call occurs, the program counter (PC) is
stored in the trap frame (tf->tf_epc).
* when the kernel returns to user mode, it must increment the
PC to the next instruction after the syscall, otherwise it
will repeat the syscall.

	 	

CS350	Midterm	 Spring	2012	 Page	4	

Question	2	[15	Marks]			
	
(a)	[4	Marks]		There	are	three	different	ways	a	thread	can	transition	from	user	mode	to	
kernel	mode.		Write	a	small	user	program	for	OS/161	that	ensures	that	all	three	would	
occur	during	its	execution	and	identify	how	each	would	occur.		If	you	cannot	ensure	a	
transition	will	occur,	explain	why.	
	
int main() {
 int i = 1;
 int *ptr = 0;
 printf("system call");
 while (i > 0) i++; // long loop to ensure timer interrupt
 i = *ptr; // exception
}

(note: partial marks for saying it's impossible for a user
prog. to cause an interrupt.)	
	
	
	
	
	
	
(b)	[5	Marks]		In	class,	5	different	sections	of	an	ELF	file	were	described:	
	

text rodata data bss sbss

Write	a	small	user	program	for	OS/161	that	would	have	elements	in	each	of	the	5	
section	types	and	identify	where	each	appears	in	your	program.	
(pro	tip:	you	can	simply	have	variable	names	that	use	the	appropriate	section	name).	
	
int data = 1;
int sbss;
int bss[4096];
void textsection () { // all code goes into text
 printf("rodata");
}	
	 	

CS350	Midterm	 Spring	2012	 Page	5	

(c)	[6	Marks]		Write	a	single	user	program	for	OS/161	that	will	generate	one	child	
process,	which	in	turn	will	generate	a	grandchild	process	(3	processes	in	total).		The	
output	should	be	the	sum	of	the	three	pids.		For	simplicity,	assume	that	pid_t	is	an	
int.			
The	following	functions	might	be	helpful:	

int printf(const char *format, ...);
pid_t getpid(void);
pid_t fork(void);
pid_t waitpid(pid_t pid, int *status, int options); // opt=0
void _exit(int exitcode);
	
int main() {
 int parent, child, grandchild;
 parent = (int) getpid();
 child = (int) fork();
 if (child == 0) {
 grandchild = (int) fork();
 _exit(grandchild);
 } else {
 waitpid(child,&grandchild,0);
 printf("%d\n", parent + child + grandchild);
 }
}

/********************
 another fun example:
 ********************/

int main() {
 int sum = (int) getpid();
 if (fork() == 0) {
 sum += (int) getpid();
 if (fork() == 0) {
 sum += (int) getpid();
 printf("%d\n",sum);
 }
 }
}
 	
	 	

CS350	Midterm	 Spring	2012	 Page	6	

	
Question	3	[5	Marks]			
	
(a)	Re‐draw	the	thread	state	transition	diagram	shown	in	
class,	and	label	each	of	the	3	states	and	all	4	transitions.	
	
(b)	In	OS/161	there	is	a	fourth	state:	S_ZOMB.			Add	this	
state	to	your	diagram	and	label	the	new	transition(s).	
	
(a) [figure from notes]

(b) A single arrow from "running" to "zombie", arrow labeled
with thread_exit.	
	
	
	
	
	 	

CS350	Midterm	 Spring	2012	 Page	7	

Question	4	[16	Marks]	
	
You	are	given	the	first	25	pages	of	an	execution	string	for	a	process:	
	
A B C D E B D B C D B C D B C B D E B D E B C B A
	
There	are	5	unique	pages,	but	it	is	to	be	run	on	a	system	that	has	only	4	frames	of	
physical	memory	allocated	to	the	process	(and	there	will	always	be	4).		None	of	the	
pages	are	resident	at	the	beginning	of	the	execution	(ie:	all	frames	are	uninitialized).	
	
(a)	[8	Marks]		For	each	of	the	following	page	replacement	algorithms,	state	which	
page(s)	would	NOT	be	in	resident	memory	at	the	end	of	the	execution.		If	you	cannot	
answer,	state	your	reason	(eg:	"not	enough	information"	or	"	a	tie	between	X	and	Y")	
	
FIFO	(First	In,	First	Out):			 	 B	
	
OPT	(Theoretically	Optimal):	 cannot determine / tie for BCDE	
	
LFU	(Least	Frequently	Used):	 E	
	
LRU	(Least	Recently	Used):	 	 D	
	
	
(b)	[3	Marks]		For	the	following	two	algorithms,	how	many	page	hits	would	there	be?	
	
OPT:	 	 19	
	
LRU:	 	 19	
	
(c)	[2	Marks]		What	is	WS(25,4)?		(In	other	words,	what	is	the	working	set	(WS)	at	the	
end	of	the	execution	if	Δ	=	4)?	
	
{A,B,C}	
	
(c)	[3	Marks]	At	the	beginning	of	the	execution	none	of	the	pages	were	resident.		
Explain	what	policy	the	O/S	would	likely	have	in	place	and	why	that	is	often	a	good	
policy.	
	
O/S is likely using demand paging, a policy that avoids over-
allocating memory and ensures pages are loaded only when
required.	
	 	

CS350	Midterm	 Spring	2012	 Page	8	

Question	5	[12	Marks]	
	
For	all	parts	of	this	question,	you	should	assume	a	virtual	memory	system	based	on	
simple	paging.	All	parts	of	this	question	refer	to	the	following	two	page	tables,	one	for	
process	P1	and	one	for	process	P2.		Note	that	the	frame	numbers	are	specified	in	
hexadecimal,	as	are	all	virtual	and	physical	addresses	used	in	this	question.	
	
P1	 	 	 P2	 	
Page	#	 Frame	#	 	 Page	#	 Frame	#	

0
1
2
3
4
5
6
7
8

0x8d10
0x1004
0x3008
0x5500
0x2220
0x2221
0x2222
0x222a
0x5558

	 0
1
2
3
4
5

0x222b
0x010a
0x010b
0x3008
0x3001
0x222c

	
(a)	[4	marks]	For	each	of	the	following	virtual	addresses	from	P1’s	virtual	address	
space,	indicate	the	physical	address	to	which	it	corresponds.	For	the	purpose	of	this	part	
of	the	question,	assume	that	the	page	size	is	4096	(212)	bytes.	Give	your	answers	in	
hexadecimal.	If	the	specified	virtual	address	is	not	part	of	the	virtual	address	space	of	
P1,	write	“NO	TRANSLATION”	instead.	
	
0x0000022 0x8d10022

0x00005ff 0x8d105ff

0x0001004 0x1004004

0x0006072 0x2222072

	
(b)	[4	marks]	Repeat	part(a),	but	this	time	for	P2	and	under	the	assumption	that	the	
page	size	is	256	(28)	bytes.	
	
0x0000022 0x222b22

0x00003a8 0x3008a8

0x00005ff 0x222cff

0x0001004 NO TRANSLATION
	
	

CS350	Midterm	 Spring	2012	 Page	9	

(c)	[4	marks]	For	each	of	the	following	physical	addresses,	indicate	which	process’s	
virtual	address	space	maps	to	that	physical	address,	and	indicate	which	specific	virtual	
address	maps	there.	If	you	cannot	answer	the	question,	explain	why	not.		For	the	
purposes	of	this	question,	assume	that	the	page	size	is	4096	(212)	bytes.	
	
0x010abcd P2: 0x1bcd

0x2222ffa P1: 0x6ffa

0x222d002 NO MAPPING (no pages map to frame 0x222d)

0x3008888 NO SPECIFIC VIRTUAL ADDRESS
 (shared memory for P1 & P2)
 P1: 0x2888 & P2: 0x3888
	 	 	 	
	
	
Question	6	[4	Marks]	
	
The	following	function	has	a	critical	section	that	should	only	be	accessed	by	one	thread	
at	a	time:	
	
int myFunction () {
 struct semaphore *s = sem_create("my semaphore", 0);
 /* ... */
 V(s);
 /* ... critical section ... */
 P(s);
 /* ... */
}
	
Is	this	a	good	design?	Briefly	justify	your	answer	
	
No, This is a bad design. The critical section is not
protected as the semaphore is declared as a local variable and
so _each_ thread has its own semaphore.

partial marks for observing:
* P & V are in the wrong order, and the sem should init to 1.
	 	

CS350	Midterm	 Spring	2012	 Page	10	

Question	7	[18	Marks]	
	
(a)	[3	Marks]	The	cat	&	mouse	simulation	in	assignment	1	was	run	entirely	in	the	
kernel.		Explain	why	it	could	not	be	run	as	a	user	process.	
	
To solve the cat and mouse problem, we require basic
synchronization primitives (semaphores are sufficient) and
shared memory.

In user space, we have neither: The semaphore interface is
entirely implemented in kernel space, and user processes each
have their own virtual address space and only support single
threads.
	
	
	
	
	
	
	
	
	
(b)	[15	Marks]	How	would	you	modify	OS/161	to	enable	users	to	run	multi‐threaded	
applications	that	can	use	semaphores	for	synchronization?	
	
Notes:	Use	point	form.		You	must	provide	sufficient	functionality	so	that	an	application	
such	as	the	cat	&	mouse	simulation	could	be	implemented	(with	semaphores).		There	are	
many	different	strategies	available	to	solve	this	problem.		You	may	assume	that	
assignment	2	has	been	completed.		You	do	not	have	to	provide	any	code,	just	describe	your	
changes	and	new	features	and	briefly	motivate	them.		
	
Note: there are many approaches.

The most straightforward is to export the use of semaphores
via new system calls to user space (eg: sys_P, sys_V,
sys_sem_create/destroy). The OS could create a user space
handle for each semaphore similar to file handlers.

continued...

	 	

CS350	Midterm	 Spring	2012	 Page	11	

Question	7	(more	space)	
	
	
The system would also require user threads to have shared
memory.

This could be done by adding shared memory syscalls (such as
shmget) so that separate processes could share memory. The OS
would map virtual pages from two processes to the same
physical memory.

Alternatively, we could enhance the OS to allow a process to
have multiple threads (each thread would share the same
address space). The OS would have a new process structure
that could contain several threads, each with a separate
thread context (stack, etc.). The OS would still have to add
new syscalls for a process to create a new thread.	

	 	

CS350	Midterm	 Spring	2012	 Page	12	

Question	8	[20	Marks]	
	
In	this	question	we	are	running	a	modified	cat	&	mouse	simulation	that	can	accommodate	an	arbitrary	
number	of	animal	types,	and	an	arbitrary	number	of	each	type	of	animal.	
	
Once	they	are	created,	animals	repeat	the	following	steps	until	they	die:	they	wait	to	eat,	they	eat,	and	then	
they	nap.			Animals	are	continuously	being	created	(it's	the	circle	of	life).		Animals	eat	at	bowls.		There	are	a	
fixed	number	of	bowls;	each	bowl	can	be	occupied	by	at	most	one	animal	at	a	time,	and	all	of	the	animals	
eating	at	the	same	time	must	be	of	the	same	type	(otherwise	there	is	chaos).		
	
You	must	implement	the	function:		
	
void bowlfree() {...} // called whenever bowls are available

You	should	try	to	implement	the	most	efficient	solution	you	can	and	keep	as	many	bowls	occupied	as	
possible.		You	should	not	worry	about	starvation	or	fairness.	
	
You	may	assume	the	following	global	variables	and	functions	are	available:	
	
const int numbowls // total number of bowls
const int N // number of animal types
volatile int numfree // number of currently free bowls
volatile int curtype // type of animal currently eating

struct animal {...} // data structure for an animal

void assign(*a) // Assign animal a to a free bowl

struct queue {...} // FIFO queue for managing animals
void qadd(*q, *a) // Add animal a to queue q
animal* qnext(*q) // Get & remove the next animal from the queue q
int qsize(*q) // Return the number of animals in q

queue *waiting[] // waiting queues for each type of animal
int maxtype() // animal type with the largest waiting[] queue
	

 You	do	not	have	to	worry	about	initializing	any	global	variables	you	create.	
 The	animal	"types"	are	integers	0..(N‐1).	(eg:	0=mice,	1=cats,	2=dogs,	etc.)	
 Assume	all	animals	behave	the	same:	they	eat	&	nap	for	the	same	duration.	
 When	bowlfree()	is	called	you	can	assume	there	is	at	least	one	bowl	free	and	at	least	one	

animal	waiting	to	eat.		The	function	bowlfree()	may	be	called	by	multiple	threads	
simultaneously.		Do	not	concern	yourself	over	how	or	when	bowlfree()	is	called	or	the	
mechanics	of	assign().	

 You	do	not	have	to	track	which	bowls	are	free	or	update	numfree.		If	there	is	a	free	bowl	
assign()	will	work	properly	and	update	numfree	for	you.		If	assign()	is	called	and	there	are	
no	free	bowls,	or	there	is	a	different	type	of	animal	currently	eating,	the	system	will	panic	(crash).	

 The	queues	and	queue	functions	are	not	synchronized.		You	should	use	a	synchronization	
mechanism	for	each	queue.		You	do	not	have	to	worry	about	how	the	waiting[]	queues	are	
populated	and	can	assume	they	are	populated	using	your	synchronization	mechanism.		

	 	

CS350	Midterm	 Spring	2012	 Page	13	

(a)	[15	marks]		
// YOUR GLOBAL VARIABLES GO HERE

struct lock *qlock[N]; // one lock per queue

struct lock *bflock; // (one master lock was acceptable)

void bowlfree() { // at least one bowl is free

 // obviously many solutions possible

 int qmax, nummax, numwait;
 int numeating = numbowls – numfree;

 lock_acquire(bflock);

 qmax = maxtype();

 lock_acquire(qlock[qmax]);
 nummax = qsize(waiting[qmax]);
 lock_release(qlock[qmax]);

 if (numeating == 0) {
 curtype = qmax;
 }

 lock_acquire(qlock[curtype]);

 numwait = qsize(waiting[curtype]);

 // Only let the current animal keep eating if
 // it can fill all the bowls, OR
 // it's capacity (eating + waiting) is larger than
 // all other animals.

 if ((numwait >= numfree)
 || ((numeating + numwait) >= nummax) {

 // this is some sample code: you can use it if you wish

 while ((numfree > 0) && (qsize(waiting[curtype]) > 0)) {
 assign(qnext(waiting[curtype]));
 }

 }
 lock_release(qlock[curtype]);
 lock_release(bflock);

}

CS350	Midterm	 Spring	2012	 Page	14	

(b)	[5	marks]		Justify	why	your	solution	is	efficient,	and	describe	any	sacrifices	in	
fairness	you	made	to	achieve	that	efficiency.	
	
If there are enough of the "current" animal C to keep the
bowls completely full at all times, we will achieve ~100%
efficiency. We completely sacrifice fairness and let C
continue to eat, possibly starving all other animals.	
	
The lower bound on efficiency is when (naptime >> eattime) and
another animal D could keep all the bowls completely full at
all times, but C keeps control of the bowls. This occurs when
and the number of C's is (numbowls + epsilon) such that the
bowls can be mostly empty for a naptime duration but will be
completely refilled with C's before all of the bowls become
empty. The efficiency is ~(eattime/naptime).

If C cannot fill the bowls, and another animal D continues to
have more capacity to fill the bowls than C, then C will stop
being assigned bowls and it will switch to D.
	
Bonus	Question	[1	Mark]	
	
Please	answer	the	following	3	questions	honestly	at	the	end	of	the	exam:	

This	exam	was	too	long:	

a) Strongly	disagree	
b) Disagree	
c) Neutral	
d) Agree	
e) Strongly	agree	

	

	

This	exam	was	too	hard:	

a) Strongly	disagree	
b) Disagree	
c) Neutral	
d) Agree	
e) Strongly	agree	

	

	
	

This	exam	was	fair:	

a) Strongly	disagree	
b) Disagree	
c) Neutral	
d) Agree	
e) Strongly	agree	

	

	

Draw	a	picture	of	an	operating	system	thrashing	

