
University of Waterloo
Midterm Examination

Term: Winter Year: 2010

Solution

——————–begin solution————————

Grade breakdown: Winter 2010

Question 1 2 3 4 5 6 7 8 Total

Average 7.5 21.2 12.6 17.8 9.0 9.0 7.2 22.6 107.0

Max 12.0 24.0 20.0 24.0 16.0 15.0 9.0 25.0 137.0

Out of 12.0 24.0 20.0 24.0 16.0 15.0 9.0 25.0 145.0

Average % 62.4 88.5 62.8 74.3 56.5 60.3 79.9 90.2 73.8

90-100 9

80-89 34

70-79 50

60-69 23

50-59 12

40-49 4

30-39 1

20-29 0

10-19 1

——————–end solution————————

CS350 1 of 17

Problem 1 (12 marks)
a. (4 mark(s)) There are only two processes in the system PA and PB containing one thread each. Assume

that PA is running and PB is on the ready to run queue. Describe the steps required to save and restore
or manipulate the processes context (including MMU) if PA performs a non-blocking system call and
it has not used up all of its quantum. Be sure to explain where the context is saved to and restored from.
Provide a general description, you don’t need to give specific register names.

——————–begin solution————————

• On the trap into the kernel all of the processor’s registers are saved onto PA’s trap frame (onto the
kernel stack for PA). This is PA’s user-mode context.

• After executing the system call PA’s user-mode context is retreived from the trap frame in it’s kernel
stack and restored to the processor registers just prior to returning from the exception to continue
running in user mode.

——————–end solution————————

b. (8 mark(s)) There are only two processes in the system PC and PD containing one thread each. Assume
that PC is running and PD is on the ready to run queue. Describe the steps required to save and restore
or manipulate the processes context (including MMU) if PC performs a blocking system call and it has
not used up all of its quantum. Be sure to explain where the context is saved to and restored from.
Provide a general description, you don’t need to give specific register names.

——————–begin solution————————

• On the trap into the kernel all of the processor’s registers are saved onto PC ’s trap frame (onto the
kernel stack for PC). This is PC ’s user-mode context.

• When PC blocks, we save it’s kernel-mode context onto the it’s kernel stack.

• We then restore PD’s context from it’s kernel stack. This is it’s kernel-mode context.

• Flush/Invalidate the contents of the TLB.

• Then PD’s user-mode context is retreived from the trap frame in it’s kernel stack and restored to
the processor registers just prior to returning from the exception to continue running in user mode.

——————–end solution————————

CS350 2 of 17

Problem 2 (24 marks)
For this question all addresses, virtual page numbers and physical frame numbers are represented in hexidec-
imal. Consider a machine with 44-bit virtual addresses, 48-bit physical addresses, and a page size of 1 MB.
During a program execution the TLB contains the following valid entries (in hexidecimal).

Virtual Page Num Physical Frame Num Valid Read-Only / Can’t Make Dirty

0x 0 0x 171 0 0
0x 1E 0x 172 1 1
0x 1EF 0x 173 1 1
0x 1EF1 0x 1EF 1 0
0x 1EF17 0x EF1 0 0
0x 1EF170 0x 8132CD 1 0
0x 1EF171 0x 132CD 1 1
0x 1EF172 0x 88132CD 1 0

Examine the following set of instructions and if possible, translate the addresses. If the translation is not
possible or an exception would be raised, indicate which exception and why the exception is raised. Show and
explain how you derived your answer. Express, in hexidecimal, the required address using ALL 44-bits for
virtual addresses and 48-bits for physical addresses (i.e., including leading zeros).

——————–begin solution————————

1 MB page size = 220 so 5 hex digits for offset.
44-20 = 24 bits (6 hex digits for virtual page number.

——————–end solution————————

a. (4 mark(s)) A load occurs from virtual address = 0x 000 01EF AC00.
If a translation occurs provide the physical address.

——————–begin solution————————

Offset = F AC00

Virtual Page = 1E

Valid bit = 1

Translation occurs

Frame number = 172

Phyical address = 0x 0000 172F AC00

——————–end solution————————

b. (4 mark(s)) A load occurs from virtual address = 0x 1EF 1729 52CD.
If a translation occurs provide the physical address.

——————–begin solution————————

Offset = 9 52CD

Virtual Page = 1EF172

Entry is found in the TLB.

Valid bit = 1

Translation occurs

Frame number = 88132CD

Phyical address = 0x 8813 2CD9 52CD
CS350 3 of 17

——————–end solution————————

c. (4 mark(s)) A store occurs to virtual address = 0x 1EF 1729 AC00.
If a translation occurs provide the physical address.

——————–begin solution————————

Offset = 9 AC00

Virtual Page = 1EF172

Entry is found in the TLB.

Valid bit = 1

Translation occurs

Frame number = 88132CD

Phyical address = 0x 8813 2CD9 AC00

——————–end solution————————

d. (4 mark(s)) A store occurs to virtual address = 0x 1EF 1709 AC00.
If a translation occurs provide the physical address.

——————–begin solution————————

Offset = 9 AC00

Virtual Page = 1EF170

Entry is found in the TLB.

Valid bit = 1

Read only bit = 0

Translation occurs.

Phyical address = 0x 0813 2CD9 AC00

——————–end solution————————

e. (4 mark(s)) A load occurs from virtual address = 0x 1EF 1739 AC00.
If a translation occurs provide the physical address.

——————–begin solution————————

Offset = 9 AC00

Virtual Page = 1EF173

No entry is found in the TLB.

Translation fails.

TLB miss exception is raised.

——————–end solution————————

f. (4 mark(s)) Can a store occur at physical address 0x 0000 1EF1 32CD? Explain your answer. If it can
occur, what is the corresponding virtual address?

——————–begin solution————————
CS350 4 of 17

Offset = 1 32CD

Physical Page = 1EF

There is an entry for that physical page in the TLB.

Valid = 1

Read only = 0

So translation could have occurred.

The virtual page number is 1EF1

So yes, the store could occur and the virtual address is

0x 001 EF11 32CD

——————–end solution————————

CS350 5 of 17

Problem 3 (20 marks)
a. (12 mark(s)) We would like multiple threads to be able to call add and sub (shown below), simultane-

ously. Add code that uses locks (as defined in OS/161) to ensure that all of the code below will execute
correctly and so that maximum parallelism is ensured. Assume that these are the only functions that
can alter the array and that there is no need to do any error checking.

#define MAX (100)

volatile int array[MAX];

void init() /* Only called by one thread before using other functions */

{

int i;

for (i=0; i<MAX; i++) {

array[i] = 0;

}

}

void add(int index, int value)

{

array[index] = array[index] + value;

}

void subtract(int index, int value)

{

array[index] = array[index] - value;

}

——————–begin solution————————
CS350 6 of 17

#define MAX (100)

volatile int array[MAX];

/* **** ADD **** */

struct lock *locks[MAX];

void init() /* Only called by one thread before using other functions */

{

int i;

for (i=0; i<MAX; i++) {

array[i] = 0;

/* **** ADD **** */

locks[i] = create_lock("name");

}

}

void add(int index, int value)

{

/* **** ADD **** */

lock_acquire(locks[index]);

array[index] = array[index] + value;

/* **** ADD **** */

lock_release(locks[index]);

}

void subtract(int index, int value)

{

/* **** ADD **** */

lock_acquire(locks[index]);

array[index] = array[index] - value;

/* **** ADD **** */

lock_release(locks[index]);

}

——————–end solution————————

CS350 7 of 17

b. (8 mark(s)) Now you would like to add the sum function shown below to the library of functions on the
previous page. This function will be called relatively infrequently (e.g., once a month) and IT WILL
ONLY EVER BE CALLED BY ONE THREAD.

Assuming that multiple threads may be executing add and sub concurrently with the thread that calls
sum, is synchronization required for the function sum if it is only called by a single thread? Explain
why or why not. If synchronization is required, add it to the code below so that it integrates with your
solution on the previous page (i.e., be sure to do the first part of this question first).

int sum()

{

int i;

int total = 0;

for (i=0; i<MAX; i++) {

total = total + array[i];

}

return total;

}

CS350 8 of 17

——————–begin solution————————

/* One possibility */

int sum()

{

int i;

int total = 0;

/* **** ADD **** */

for (i=0; i<MAX; i++) {

lock_acquire(locks[i]);

}

for (i=0; i<MAX; i++) {

total = total + array[i];

}

/* **** ADD **** */

for (i=0; i<MAX; i++) {

lock_release(locks[i]);

}

return total;

}

/* Another possibility */

int sum()

{

int i;

int total = 0;

for (i=0; i<MAX; i++) {

/* **** ADD **** */

lock_acquire(locks[i]);

total = total + array[i];

}

/* **** ADD **** */

for (i=0; i<MAX; i++) {

lock_release(locks[i]);

}

return total;

}

/* And Another possibility */

int sum()

{

int i;

int total = 0;

/* **** ADD **** */
CS350 9 of 17

for (i=0; i<MAX; i++) {

lock_acquire(locks[i]);

}

for (i=0; i<MAX; i++) {

total = total + array[i];

/* **** ADD **** */

lock_release(locks[i]);

}

return total;

}

• Does need to be synchronized

• Other threads can change array while sum is being computed

• Best can do is to compute the sum of a snapshot. Snapshot is valid at the point that the final lock
is grabbed.

• May note that the actual total could change between the time the first lock is released (e.g., locks[0]
and the total is returned).

——————–end solution————————

CS350 10 of 17

Problem 4 (24 marks)
Three threads are in the ready to run queue, in the order, T1, T2, and T3.

• Thread T1 runs a loop that executes 4 times. During each loop it runs for 1 unit of time and then makes
a system call that blocks for 4 units of time. After looping the program exits.

• Threads T2, and T3 run a loop that executes 2 times. During each loop they run for 3 units of time and
then call thread yield. After looping the program exits.

On the timeline below show when each thread runs and when the processor is idle by shading the appropriate
thread or idle line. If two events happen at the same time, assume that the higher numbered thread
goes first (i.e., its event occurs first).

a. (10 mark(s)) Assume a non preemptive FIFO scheduler and the starting point is as described at the
top of this question.

10 15 20 2550

T1

T2

T3

Idle

——————–begin solution————————

NOTE: There was some confusion about the tie-breaking so

we need to be careful marking this question.

1 mark per line = 10 marks.

Idle

15 20 2550

T1

T2

T3

10

One way is to track the queue at each point in time

(below to simplify, we are running the thread at the front of the queue)

Time Queue

t0 T1, T2, T3

t1 T2, T3 (T1 is blocked)

t4 T3, T2 (T1 is blocked)

t5 T3, T2, T1 (T1 is unblocked)

t7 T2, T1, T3 (T2 is finished)

t10 T1, T3

t11 T3 (T1 is blocked)
CS350 11 of 17

t14 Idle (T3 is finished)

t15 T1 (T1 is unblocked)

t16 Idle (T1 is blocked)

t20 T1 (T1 is unblocked)

t21 Idle (T1 is blocked)

t25 Idle (T1 is unblocked)

——————–end solution————————

b. (14 mark(s)) Assume a preemptive round-robin scheduler with a quantum of 2 and that the running
time for the thread is reset to zero every time the thread executes (i.e., unused quantums do not carry
over to the next time the thread runs). Use the starting point as described at the top of the question.

10 15 20 2550

T1

T2

T3

Idle

——————–begin solution————————

THIS SOLUTION NEEDS TO BE CHECKED / REDONE

1 mark per line = 14 marks.

10 15 20 2550

T1

T2

T3

Idle

——————–end solution————————

CS350 12 of 17

Problem 5 (16 marks)
a. (2 mark(s)) After a thread has called thread yield what steps are required for it to run again?

——————–begin solution————————

It gets put into the ready to run queue.
It gets scheduled to run and gets dispatched.

——————–end solution————————

b. (2 mark(s)) Under what circumstances might an executing thread call thread yield and yet be the
next thread to run.

——————–begin solution————————

When it is the only thread in the system.
When all other threads are blocked.

——————–end solution————————

c. (2 mark(s)) After a thread has called thread sleep what steps are required for it to run again?

——————–begin solution————————

Another thread must wake it up using thread wakeup.
It gets added to the ready to run queue.
The scheduler picks it to run and it is dispatched.

——————–end solution————————

d. (6 mark(s)) Describe one pro (advantage) and two cons (disadvantages) of disabling interrupts as a
means for implementing synchronization.

——————–begin solution————————

This and next question were generally poorly done. - reiterating the question as a statement - irrelevant
facts about synchronization do not answer the question

pro: does not require any hardware specific synchronization instructions

plus two of these three:

con: will not enforce mutual exclusion on multiprocessors
con: ignoring timer interrupts has side effects (i.e., can cause problems)
con: prevents all preemption, not just preemption that would threaten the critical section

——————–end solution————————

e. (4 mark(s)) Describe one pro (advantage) and one con (disadvantage) of using an atomic instruction
like Test-and-Set as a means for implementing synchronization.

——————–begin solution————————

pro: it works on multiprocessor systems
con: it can waste cpu resources essentially spinning for a long time

——————–end solution————————

CS350 13 of 17

Problem 6 (15 marks)
WRONG ANSWERS WILL RECEIVE NEGATIVE MARKS, SO YOU MAY NOT WANT TO
GUESSS IF YOU ARE NOT SURE OF THE ANSWER

a. (3 mark(s)) In OS/161 the only instruction that can be executed in user-mode that can cause the
processor to switch to priveledged (or kernel) mode is the syscall instruction. True or False?

——————–begin solution————————

FALSE.

——————–end solution————————

b. (3 mark(s)) The MIPS uses a software loaded TLB. True or False?

——————–begin solution————————

TRUE.

——————–end solution————————

c. (3 mark(s)) In OS/161 interrupts can be disabled while in user-mode. True or False?

——————–begin solution————————

FALSE

——————–end solution————————

d. (3 mark(s)) In OS/161 the number of bytes in the virtual address space of a program is always equal
to the number bytes in the executable file True or False?

——————–begin solution————————

FALSE

——————–end solution————————

e. (3 mark(s))

The original implementation of semphores provided by OS/161 ensures that starvation can not occur.
True or False?

——————–begin solution————————

FALSE

——————–end solution————————

CS350 14 of 17

Problem 7 (9 marks)
Study the code below and answer the question that follows.

/* SHOULD ALWAYS BE BETWEEN 0 AND 100. INCLUDING 0 AND 100 */

volatile int count = 0;

adjust_count()

{

int spl;

int doreset = FALSE;

if (count == 100) {

doreset = TRUE;

}

spl = splhigh();

if (doreset == TRUE) {

count = 0;

} else {

count++;

}

splx(spl);

}

a. (9 mark(s)) If multiple threads are executing and calling adjust count, is the value for the variable
count guaranteed to be between 0 and 100 (including 0 and 100)? Explain your answer. Use examples
if it helps to clarify your answer.

——————–begin solution————————

The variable count can be modified by multiple threads. Because its value can change while being tested
it needs to be inside the critical section.

If multiple threads check the count at the same time, and each finds the count equal to 99 each will
increment the count and it will go beyond 100.

Common mistakes were thinking that the local stack variable doreset is shared between threads and
comming up with an explanation where doreset gets read by one thread and changed by another thread
(this is incorrect).

——————–end solution————————

CS350 15 of 17

Problem 8 (25 marks)
This question uses the following notation (as used in the course notes) to describe resource allocation in a
computer system :

• Di: demand vector for process Pi

• Ai: current allocation vector for process Pi

• U : unallocated (available) resource vector

Given the scenario below, fill in the details for the resource allocation graph, indicate if the system is
deadlocked, and justify your answer (in one sentence).
PLEASE USE SOLID LINES WITH ARROWS FOR ALLOCATION EDGES AND DASHED OR DOTTED
LINES WITH ARROWS FOR REQUEST EDGES.
U = (1, 0, 0, 0)
D1 = (1, 0, 1, 0), D2 = (0, 1, 1, 0), D3 = (0, 0, 1, 1), D4 = (0, 0, 0, 1)
A1 = (1, 0, 0, 1), A2 = (1, 1, 0, 1), A3 = (1, 0, 0, 1), A4 = (0, 2, 1, 1).

P1 P2 P3 P4

R2R1

R3 R4

CS350 16 of 17

——————–begin solution————————

P1 P2 P3 P4

R2R1

R3 R4

The system IS DEADLOCKED.
The only resource available is one R1 and
Each of P1, P2, P3 and P4 need an R3 or an R4 and there aren’t any of those available so there is a deadlock.
Or the only unallocated resource is 1 R1 and giving it to ANY of the Pi’s doesn’t help any of them to

finish, so there is deadlock.

——————–end solution————————

CS350 17 of 17

