
University of Waterloo
Midterm Examination

Term: Winter Year: 2012

Student Family Name

Student Given Name

Student ID Number

Section : Circle one (Brecht 8:30) (Brecht 11:30)

Course Abbreviation and Number: CS 350
Course Title: Operating Systems
Section(s): 2
Instructors: Tim Brecht

Date of Exam: March 5, 2012
Time Period Start time: 7:00 pm End time: 9:00 pm
Duration of Exam: 120 minutes
Number of Exam Pages: 11 (including cover sheet)

NO CALCULATORS, NO ADDITIONAL MATERIAL

Problem Topic Marks Score Marker’s Initials

1 General 10

2 Processes, fork, exec 17

3 Threads and Synchronization 20

4 Deadlock and Synchronization 18

5 OS/161 and Address Translation 10

6 TLBs and Address Translation 12

Total 87

CS350 1 of 11



Problem 1 (10 marks)
a. (2 mark(s)) Describe the different sources of overheads that are incurred when an application makes a

BLOCKING system call in OS/161.

b. (2 mark(s)) Explain what it means for a synchronization mechanism to be “starvation free”.

c. (2 mark(s)) Did you read the paper “An Introduction to Programming with Threads”, or “An Intro-
duction to Programming with C# Threads”, by Andrew Birrell? If yes did you find the paper useful?
Explain why or why not. If you did not read the paper, explain why you didn’t.

d. (2 mark(s)) In whichever version of the Birrell paper you read what is the name of the function used
to wait for another thread to finish?

e. (2 mark(s)) According to the Birrell paper you read, what are a spurious wake-ups and what is one
example cause of spurious wake-ups?

CS350 2 of 11



Problem 2 (17 marks)
For the programs shown, fill in the blanks below each program to indicate how many characters of each letter
will be printed in total when the program finishes running. If a range of values is possible, give the range. If it
is not possible to determine the number or a range, state so and explain why. Assume that all function, library
and system calls are successful. Use the space to the right of each program to draw a diagram of the process
hierarchy that results during execution and to explain how you arrived at your answer. NO MARKS WILL
BE GIVEN UNLESS A PROPER DIAGRAM AND EXPLANATION ARE PROVIDED.

a. (9 mark(s))

/* forkprint1.c : source code for the program forkprint1 */

int main(int argc, char *argv[])

{

int rc;

int status;

char *args[3];

args[0] = (char *) "pgm";

args[1] = (char *) "X";

args[2] = (char *) 0;

rc = fork();

printf("A");

if (rc != 0) {

rc = fork();

}

printf("B");

rc = fork();

printf("C");

if (rc == 0) {

/* exec the program shown below */

rc = execv("pgm", args);

printf("D");

} else {

waitpid(rc, &status, 0);

}

printf("E");

}

/*--------------------------------------------------------------------------------------*/

/* pgm.c : source code for "pgm". Used above by forkprint1.c */

int main(int argc, char *argv[])

{

printf("%s", argv[1]);

}

Total number of printed A’s , B’s , C’s , D’s , E’s , X’s

CS350 3 of 11



b. (8 mark(s))

/* forkprint2.c : source code for the program forkprint2 */

char *str = "X";

main()

{

int rc;

rc = fork();

printf("A");

rc = fork();

printf("B");

if (rc == 0) {

str = "Z";

printf("C");

rc = fork();

}

printf("%s", str);

}

Total number of printed A’s , B’s , C’s , X’s , Z’s

CS350 4 of 11



Problem 3 (20 marks)
Below you will find some programs that may or may not be implemented correctly. Assume that the file
neededstuff.h contains any definitions that are missing from the existing code (e.g., T, DATA SIZE, etc.).

In each case below you are to look at the solution provided to the described problem and to determine
whether or not the solution will always produce the correct result. If the solution will not produce the correct
result add to and/or change the code (including necessary declarations and initialization code) so that it does
produce the correct result. Use only those synchronization primitives available in OS/161 after assignment 1
has been completed. Do not disable and/or enable interrupts. If the solution is correct just write CORRECT
on the solution. Assume that any function, library, or system calls always succeed.

a. (8 mark(s)) This program should print the maximum value found in array.

#include "neededstuff.h"

unsigned int max = 0;

unsigned int array[DATA_SIZE];

main()

{

int i = 0;

for (i=0; i<T; i++) {

thread_fork("findmax", findmax, UNUSED_PTR, i, NORETURN_VAL);

}

/* PRINT THE MAXIMUM VALUE FOUND IN ARRAY */

printf("Maximum value = %u\n", max);

}

void findmax(void *unused, unsigned long threadnum)

{

int i = 0; int size = DATA_SIZE/T; /* assume this divides evenly */

int start = size * (int) threadnum;

for (i=start; i<start+size; i++) {

if (array[i] > max) {

max = array[i];

}

}

}

CS350 5 of 11



b. (12 mark(s)) This program should place values in an array (concurrently) and then compute the sum
of those values (also concurrently). Once the sum has been computed it should be printed.

#include "neededstuff.h"

int array[DATA_SIZE];

main()

{

int i = 0;

int grand_total = 0;

for (i=0; i<T; i++) {

thread_fork("populate", populate, UNUSED_PTR, i, NORETURN_VAL);

}

for (i=0; i<T; i++) {

thread_fork("dosum", dosum, UNUSED_PTR, i, NORETURN_VAL);

}

/* SHOULD PRINT SUM OF ALL ELEMENTS OF ARRAY */

printf("Sum of all elements of array = %d\n", grand_total);

}

void populate(void *unused, unsigned long threadnum)

{

int i = 0; int size = DATA_SIZE/T; /* assume this divides evenly */

int start = size * (int) threadnum;

for (i=start; i<start+size; i++) {

array[i] = i;

}

}
continued ...

CS350 6 of 11



void dosum(void *unused, unsigned long threadnum)

{

int i = 0;

int size = DATA_SIZE/T; /* assume this divides evenly */

int start = size * (int) threadnum;

int sum = 0

for (i=start; i<start+size; i++) {

sum = sum + array[i];

}

grand_total = grand_total + sum;

}

CS350 7 of 11



Problem 4 (18 marks)
Several different versions of a function to transfer funds from one bank account to another are shown below.
Your manager wants you to evaluate each of them to see if any one of them could be used safely and correctly
with multiple threads. When evaluating any one of them it would be the only one used and the others would not
be called. Assume that all function, library and system calls succeed and that appropriate missing definitions
and initializations are provided and/or called elsewhere. Your manager wants you to answer the following
questions and to explain your answer:

• Can the use of the procedure result in a deadlock? Circle the answer and describe why or why not.

• Will the procedure transfer the specified amount between the two accounts correctly (aside from possible
deadlock problems) and maintain correct balances? Circle the answer and describe why or why not.

NOTE: several locks are declared and/or used differently in each of the different procedures so
you need to carefully read the code to see which locks are being used.

struct lock *from_lock;

struct lock *to_lock;

struct account {

struct lock *lock;

volatile int balance; /* THIS WAS NOT BUT SHOULD HAVE BEEN DECLARED VOLATILE */

int num;

};

init()

{

from_lock = lock_create("from_lock");

to_lock = lock_create("to_lock");

}

a. (6 mark(s))
void transfer1(struct account *from_account, struct account *to_account, int amount)

{

lock_acquire(from_lock);

lock_acquire(to_lock);

from_account->balance -= amount;

to_account->balance += amount;

lock_release(to_lock);

lock_release(from_lock);

}

Deadlock: YES NO

Correct: YES NO

CS350 8 of 11



b. (6 mark(s))
void transfer2(stuct account *from_account, struct account *to_account, int amount)

{

lock_acquire(from_account->lock);

lock_acquire(to_account->lock);

from_account->balance -= amount;

to_account->balance += amount;

lock_release(to_account->lock);

lock_release(from_account->lock);

}

Deadlock: YES NO

Correct: YES NO

c. (6 mark(s))
void transfer3(struct account *from_account, struct account *to_account, int amount)

{

struct lock *from = create_lock("from"); /* typo in original was missing (*) ptr */

struct lock *to = create_lock("to"); /* typo in original was missing (*) ptr */

lock_acquire(from); /* announced correction during exam */

lock_acquire(to);

from_account->balance -= amount;

to_account->balance += amount;

lock_release(to);

lock_release(from);

lock_destroy(from);

lock_destroy(to);

}

Deadlock: YES NO

Correct: YES NO

CS350 9 of 11



Problem 5 (10 marks)
The structure addrspace shown below describes the address space of a running process on a 32-bit MIPS
processor similar to that used in the assignments. The virtual page size is 4096 (0x1000) bytes. Assume that
the operating system gives each process a stack segment consisting of 16 pages, starting at virtual address
0x7fff0000 and ending at virtual address 0x7fffffff.

struct addrspace {

vaddr_t as_vbase1 = 0x00900000; /* text segment: virtual base address */

paddr_t as_pbase1 = 0x10000000; /* text segment: physical base address */

size_t as_npages1 = 32; /* text segment: number of pages in decimal */

vaddr_t as_vbase2 = 0x30000000; /* data segment: virtual base address */

paddr_t as_pbase2 = 0x00400000; /* data segment: physical base address */

size_t as_npages2 = 512; /* data segment: number of pages in decimal */

paddr_t as_stackpbase = 0x80000000; /* stack segment: physical base address */

};

For an application executing in user space that uses the address space defined above, assume that it is accessing
the specified addresses below. When possible you are to translate the provided address. If the translation is
not possible, explain why it is not possible and what would happen during translation. If the translation is
possible indicate which segment the address belongs to. Use hexadecimal notation for all addresses.
Some possibly useful values:

1 * 4096 = 0x1000 2 * 4096 = 0x2000 10 * 4096 = 0xA000

16 * 4096 = 0x10000 32 * 4096 = 0x20000 100 * 4096 = 0x64000

128 * 4096 = 0x80000 256 * 4096 = 0x100000 512 * 4096 = 0x200000

a. (2 mark(s)) Translate the Virtual Address 0x0090A8C0 to a Physical Address.

b. (2 mark(s)) Translate the Virtual Address 0x7FFFB495 to a Physical Address.

c. (2 mark(s)) Translate the Physical Address 0x00519BCF to a Virtual Address.

d. (2 mark(s)) Translate the Physical Address 0x8000100A to a Virtual Address.

e. (2 mark(s)) Translate the Virtual Address 0x8000100A to a Physical Address.

CS350 10 of 11



Problem 6 (12 marks)
Some possibly useful info: 210 = 1 KB, 220 = 1 MB, 230 = 1 GB

In this question all addresses, virtual page numbers and physical frame numbers are represented in octal.
Recall that each octal character represents 3 bits. Consider a machine with 33-bit virtual addresses and a
page size of 32768 bytes (32 KB). During a program’s execution the TLB contains the following entries (all in
octal).

Virtual Page Num Physical Frame Num Valid Dirty

6125 1234567 1 0
61252 123456 0 0
612 3013 1 1
612521 765432 1 1

If possible, explain how the MMU will translate the virtual addresses given below (in octal) into a 36-bit

physical address (in octal). If it is not possible, explain what will happen and why. Show and explain how
you derived your answer. Express the final physical address using all 36-bits.

a. (3 mark(s)) Load from virtual address = 61252127604.

b. (3 mark(s)) Store to virtual address = 61252127.

c. (3 mark(s)) Store to virtual address = 612503714.

d. (3 mark(s)) Can a store be performed on the physical address = 12345671032? If yes, provide the
virtual address used to access this physical address and if not explain precisely why not.

CS350 11 of 11


