
University of Waterloo
Midterm Examination

Term: Winter Year: 2013

Student Family Name

Student Given Name

Student ID Number

Section : Circle one (Brecht 11:30) (Brecht 1:00)

Course Abbreviation and Number: CS 350
Course Title: Operating Systems
Section(s): 2
Instructors: Tim Brecht

Date of Exam: March 6, 2013
Time Period Start time: 7:00 pm End time: 9:00 pm
Duration of Exam: 120 minutes
Number of Exam Pages: 9 (including cover sheet)

NO CALCULATORS, NO ADDITIONAL MATERIAL

Problem Topic Marks Score Marker’s Initials

1 General 8

2 Processes and fork 12

3 Stack State and Interrupts 12

4 Threads and Synchronization 10

5 Synchronization and Deadlock 10

6 OS/161 and Address Translation 10

7 Segmentation and Paging 14

Total 76

CS350 1 of 9



Problem 1 (8 marks)
a. (2 mark(s)) You are working on an operating system for a new machine. The processor in this system

uses 36 bits for virtual and physical addresses and it has three options for different page sizes:

(a) 4096 bytes (4 KB)

(b) 8192 bytes (8 KB)

(c) 65536 bytes (64 KB)

Each of these choices leaves a different number of bits available for the virtual page number and some team
members are arguing about which choice allows the largest amount of virtual memory to be addressed.
Explain which option, if any, provides the largest amount of virtual memory to be addressed and why.

b. (2 mark(s)) Can a single thread have more than one address space? Explain your answer.

c. (2 mark(s)) In a system that implements paging, the processor uses 34-bit virtual addresses, 40-bit
physical addresses and a page size of 8 KB. How many bits are needed to represent the physical frame?
Explain your answer.

d. (2 mark(s)) Explain why it is not a good idea to wake up more than one thread when implementing
lock release.

CS350 2 of 9



Problem 2 (12 marks)
For the program shown below, fill in the blanks at the bottom of the page to indicate how many characters
of each letter will be printed in total when the program finishes running. If a range of values is possible,
give the range. If it is not possible to determine the number or a range, state so and explain why. Assume
that all function, library and system calls are successful. Use the space to the right of the program to draw
a diagram of the process hierarchy that results during execution. Use that diagram to explain how you
arrived at your answer. NO MARKS WILL BE GIVEN UNLESS A PROPER DIAGRAM AND
EXPLANATION ARE PROVIDED.

#include <stdio.h>

#include <unistd.h>

main()

{

int rc1, rc2, rc3;

rc1 = fork();

rc2 = fork();

if (rc1 == 0) {

printf("A");

rc2 = 0;

rc3 = fork();

}

if (rc2 == 0) {

printf("B");

} else {

printf("C");

}

printf("D");

}

Total number of printed A’s B’s C’s D’s

CS350 3 of 9



Problem 3 (12 marks)
Assume one user-level process (named P1) executes the code shown below on OS161.

main() Q() R() S()

{ { { {

Q(); S(); S(); int i, x;

R(); } printf("Hello\n"); for (i=0; i<N; i++) {

} } x = x + i;

}

}

In the rectangles shown for each part of this question below, fill in and label any information about the state
of the user-level stack and the kernel stack for the executing process (P1) as they would appear at the
point in time stated in the question. Do not draw anything that has been popped from the stacks (is no longer
active) and use the same level of detail used in class and the course notes. Be sure to show any stack frames,
trap frames, and thread contexts, if they are present. Draw the stack so that the high addresses are at the top
of the diagram and low addresses are at the bottom. Recall that the stack grows from high addresses to low.

a. (8 mark(s)) The process P1 calls main, Q, and S at which point it is interrupted (while still executing
S) and a context switch to another process (P2) occurs. Show the state of the stacks for P1 after the
context switch to P2 has completed.

User Stack Kernel Stack

b. (4 mark(s)) Now assume that the thread for P1 is later dispatched and it resumes execution. Show the
state of the stacks for P1 as they would appear after running to the point in the code just after returning
from S() but before the call to printf("Hello").

User Stack Kernel Stack

CS350 4 of 9



Problem 4 (10 marks)
Consider executing the code below when answering the questions on this page.

struct semaphore *sem1, *sem2;

main()

{

sem1 = sem_create("sem1", 2);

sem2 = sem_create("sem2", 4);

for(i=0; i<10; i++) {

thread_fork("A",NULL,i,A,NULL);

}

for(i=0; i<7; i++) {

thread_fork("B",NULL,i,B,NULL);

}

}

void A(void *x, unsigned long y) void B(void *x, unsigned long y)

{ {

P(sem1); printf("B");

printf("A"); P(sem2);

P(sem2); printf("D");

printf("C"); V(sem1);

} }

For each of the substrings of output below indicate, by circling the appropriate response, whether or not the
output IS POSSIBLE, IS NOT POSSIBLE, or CAN NOT BE DETERMINED. Assume that the first character
shown is the first character printed when the threads start running and that not all of the output is shown (i.e.,
all threads have not finished executing). If you choose IS NOT POSSIBLE, or CAN NOT BE DETERMINED
briefly explain why.

ACBDBABBBDCAC [IS POSSIBLE] [IS NOT POSSIBLE] [CAN NOT DETERMINED]

BABABCBBCBB [IS POSSIBLE] [IS NOT POSSIBLE] [CAN NOT DETERMINED]

BABABCBCBCB [IS POSSIBLE] [IS NOT POSSIBLE] [CAN NOT DETERMINED]

ABAABBBBDD [IS POSSIBLE] [IS NOT POSSIBLE] [CAN NOT DETERMINED]

ABABBCCDBDAA [IS POSSIBLE] [IS NOT POSSIBLE] [CAN NOT DETERMINED]

CS350 5 of 9



Problem 5 (10 marks)
Consider the code below when answering the questions on this page. Assume that the locks are all initialized
properly before being used (as shown in the function init()) and that funcA() and funcB() do not do
anything that could produce a deadlock. For each of the scenarios in the questions below state whether or not
deadlock CAN or CAN NOT occur and explain why. Each scenario/question is separate (i.e., the locks and
threads are reinitialized for each part of the question).

struct lock *A[N],

struct lock *B[N];

void init()

{

for (i=0; i<N; i++) {

A[i] = lock_create("NoName");

B[i] = lock_create("NoName");

}

}

void ProcA()

{

for (i=0; i<N; i++) {

lock_acquire(A[i]);

lock_acquire(B[i]);

funcA();

lock_release(A[i]);

lock_release(B[i]);

}

}
void ProcB(int i, int j)

{

assert(i > j);

assert(i >= 0 && i < N);

assert(j >= 0 && j < N);

lock_acquire(A[i]);

lock_acquire(B[j]);

funcB(i,j);

lock_release(B[j]);

lock_release(A[i]);

}

a. (6 mark(s)) A bunch of threads are created and they only call ProcA().

b. (4 mark(s)) A bunch of threads are created and they only call ProcB(). When they call ProcB() the
value of i is always greater than j and both i and j are always between 0 and N-1 (inclusive). In other
words, the assertions are never triggered.

CS350 6 of 9



Problem 6 (10 marks)
The structure addrspace shown below describes the address space of a running process on a 32-bit MIPS
processor similar to the dumbvm provided in OS161. The virtual page size is 4096 (0x1000) bytes. In this
implementation, the compiler, linker and operating system use different locations for text, data and stack
segments than those used by the version of OS161 and the toolchains you are using this term. Fortunately,
this new version of the OS161 kernel now explicitly represents the stack as segment 3 (note the stack size).

struct addrspace {

vaddr_t as_vbase1 = 0x10000000; /* text segment: virtual base address */

paddr_t as_pbase1 = 0x00010000; /* text segment: physical base address */

size_t as_npages1 = 0x200; /* text segment: number of pages */

vaddr_t as_vbase2 = 0x20000000; /* data segment: virtual base address */

paddr_t as_pbase2 = 0x80000000; /* data segment: physical base address */

size_t as_npages2 = 0x137; /* data segment: number of pages */

vaddr_t as_vbase3 = 0x70000000; /* stack segment: virtual base address */

paddr_t as_pbase3 = 0x10000000; /* stack segment: physical base address */

size_t as_npages3 = 0x18; /* stack segment: number of pages */

};

For an application executing in user space that uses the address space defined above, assume that it is accessing
the specified addresses below. When possible you are to translate the provided address. If the translation is
not possible, explain why it is not possible and what would happen during translation. If the translation is
possible indicate which segment the address belongs to. Use 32-bit hexadecimal notation for all addresses.
Some possibly useful values:

1 * 4096 = 0x1000 2 * 4096 = 0x2000 10 * 4096 = 0xA000

16 * 4096 = 0x10000 32 * 4096 = 0x20000 100 * 4096 = 0x64000

128 * 4096 = 0x80000 256 * 4096 = 0x100000 512 * 4096 = 0x200000

a. (2 mark(s)) Translate the Virtual Address 0x70016429 to a Physical Address.

b. (2 mark(s)) Translate the Virtual Address 0x7FFF1289 to a Physical Address.

c. (2 mark(s)) Translate the Physical Address 0x80000080 to a Virtual Address.

d. (2 mark(s)) Translate the Physical Address 0x10013F39 to a Virtual Address.

e. (2 mark(s)) Translate the Virtual Address 0x80000080 to a Physical Address.

CS350 7 of 9



Problem 7 (14 marks)
Consider a processor that uses segmentation and paging (i.e., this is not a MIPS processor). Below is the
segment table being used for the currently executing process and below that are pages tables for several
processes in the system. Note that some processes may not use all of the available segments. Recall that VPN
is the virtual page number, PFN is the physical frame number, V is the valid bit and D is the dirty bit (i.e.,
the page can be dirtied/modified).

Segment PT base addr Max VPN Value

4 70700000 3
3 70200000 3
2 70500000 3
1 70300000 3
0 70100000 3

VPN PFN V D

3 5177 1 0
2 20 0 0
1 77 1 0
0 4251 0 0

Base addr: 70000000

VPN PFN V D

3 1311 1 0
2 12 1 0
1 711 0 0
0 23 1 0

Base addr: 70700000

VPN PFN V D

3 52 1 1
2 41 1 1
1 30 1 1
0 5177 0 1

Base addr: 70400000

VPN PFN V D

3 65 1 1
2 77 1 1
1 567 1 1
0 672 1 1

Base addr: 70300000

VPN PFN V D

3 641 0 1
2 753 1 1
1 2577 1 1
0 517 1 1

Base addr: 70200000

VPN PFN V D

3 5532 0 1
2 5177 1 1
1 336 0 1
0 77 1 1

Base addr: 70600000

VPN PFN V D

3 5177 1 1
2 34 1 1
1 563 1 1
0 1641 1 1

Base addr: 70500000

VPN PFN V D

3 516 1 1
2 37 0 1
1 7731 1 1
0 6341 1 1

Base addr: 70100000

For the first parts of this question (parts a – e) assume that the processor is using 32-bits for virtual and
physical addresses, that the page size is 64 KB, that all addresses (virtual and physical) and values shown in
the segment table and page tables are expressed in hexadecimal, and that the system uses 4 bits for segments.

a. (2 mark(s)) Explain how many bits of the virtual address will be used to represent the offset?

b. (2 mark(s)) What is the maximum possible size of a segment in this system in bytes (expressed as
an equation).

c. (2 mark(s)) Convert the virtual address 0x20043751 into a 32-bit physical addresses (also expressed
in hexadecimal). Show your work and if the address can not be translated, explain why.

CS350 8 of 9



d. (2 mark(s)) Convert the virtual address 0x30022267 into a 32-bit physical addresses (also expressed
in hexadecimal). Show your work and if the address can not be translated, explain why.

e. (2 mark(s)) Convert the physical address 0x51773721 into a 32-bit virtual addresses (also expressed
in hexadecimal). Show your work and if the address can not be translated, explain why.

For the remaining part of this question assume that the processor is using 24-bits for virtual and physical
addresses, that the page size is 512 bytes, that all values shown in the segment table and the page tables
are to be interpreted as octal values (i.e., each character represents 3 bits) and that the system uses 3
bits for segments. Note that some processes may not use all of the available segments.

f. (4 mark(s)) Convert the physical address 00077356 (expressed in octal) into a 24-bit virtual address
(also expressed in octal). Show your work and if the address can not be translated, explain why.

CS350 9 of 9


