
University of Waterloo
Midterm Examination

Term: Winter Year: 2015

Student Family Name

Student Given Name

Student ID Number

Section : Circle one (Brecht 8:30) (Brecht 1:00)

Course Abbreviation and Number: CS 350
Course Title: Operating Systems
Section(s): 2
Instructors: Tim Brecht

Date of Exam: March 2, 2015
Time Period Start time: 7:00 pm End time: 9:00 pm
Duration of Exam: 120 minutes
Number of Exam Pages: 9 (including cover sheet)

NO CALCULATORS, NO ADDITIONAL MATERIAL

Problem Topic Marks Score Marker’s Initials

1 Threads and thread fork 9

2 Processes and fork 14

3 Context Switching 12

4 Kernel Stacks 10

5 Synchronization 12

6 TLBs and Address Translation 9

7 OS/161-“like” Address Translation 9

Total 75

CS350 1 of 9



Problem 1 (9 marks)
For the program shown below, assume that all function, library and system calls are successful. Recall that
the prototype/signature for thread fork is:

int thread_fork(const char *name, struct proc *proc,

void (*func)(void *, unsigned long),

void *data1, unsigned long data2);

volatile int x = 42;

main()

{

/* name="1", no process, runs func1 */

/* parameters 0 and 0, not used */

thread_fork("1",NULL,func1,0,0);

/* name="2", no process, runs func2 */

/* parameters 0 and 0, not used */

thread_fork("2",NULL,func2,0,0);

func3(0,0);

}

void func1(unsigned long notused, void *notused2)

{

kprintf("A: %d\n", x);

x = 10;

}

void func2(unsigned long notused, void *notused2)

{

kprintf("B: %d\n", x);

x = 20;

}

void func3(unsigned long notused, void *notused2)

{

kprintf("C: %d\n", x);

x = 30;

}

When consdering each line of output produced by the program above, what would the output be when
printing the value of the variable x? If more than one value or a range of values is possible, list all possible
values or ranges.

/* From func1 */ A:

/* From func2 */ B:

/* From func3 */ C:

CS350 2 of 9



Problem 2 (14 marks)
For the program shown below, what output would be printed when it runs? If a range or multiple values are
possible, give the range or possible values. If it is not possible to determine the value, posssible values or a
range, state so and explain why. Assume that all function, library and system calls are successful. If more than
one ordering of output is possible choose one of the possible orderings. Recall that WEXITSTATUS(status) just
gets the exit code portion of the status variable.

int x = 42;

main()

{

int rc, status;

rc = fork();

if (rc == 0) {

func1();

_exit(1);

} else {

rc = waitpid(rc, &status, 0);

printf("R: %d", WEXITSTATUS(status));

printf("M: %d\n", x);

x = 100;

printf("P: %d\n", x);

_exit(2);

}

func2();

}

void func1()

{

int rc, status;

printf("T: %d\n", x);

x = 10;

rc = fork();

if (rc == 0) {

x = 50;

printf("Q: %d\n", x);

_exit(3);

}

rc = waitpid(rc, &status, 0)

printf("A: %d\n", x);

printf("D: %d", WEXITSTATUS(status));

_exit(4);

}

void func2()

{

printf("C: %d\n", x);

}

CS350 3 of 9



Problem 3 (12 marks)
The diagram below shows a number of threads executing on two different CPUs (the names of each thread are
shown). The vertical lines indicate context switches between two threads and the labels at those vertical lines
indicate the time at which the context switch occurred.

T1T3 T1 T5 T3
CPU 1

CPU 0

D

E

F

G

H

CA

B

T1 T2 T3 T5T2

In OS/161 a context switch is initiated by a call to thread switch. That function determines which thread
to run next (pointed to by next) and calls switchframe switch which performs the context switch from the
current thread (pointed to by cur) to the next thread (pointed to by next). In the code below we have added
two kprintf calls to print out the names of the cur and next thread before and after the context switch.

kprintf("Before: cur = %s next = %s\n", cur->t_name, next->t_name);

/* do the switch (in assembler in switch.S) */

switchframe_switch(&cur->t_context, &next->t_context);

kprintf("After: cur = %s next = %s\n", cur->t_name, next->t_name);

Using the diagram at the top of the page and the code above fill in the output that would be produced after
each call to switchframe switch (the output for the “Before” print statement has been provided). If it is
not possible to determine the answer from the information provided in the diagram use the label “UN” (for
unknown).

Before After

Time cur next cur next

A T1 T2

E T3 T2

G T2 T5

H T1 T3

CS350 4 of 9



Problem 4 (10 marks)
Assume a user-level process (named P1) executes the code shown below on OS161.
main() Q() R() S()

{ { { { int i, x;

Q(); int x = getpid(); int y = getpid(); for (i=0;i<N;i++) {

R(); x = x + i;

S(); }

} } } }

In the rectangles shown for each part of this question below, fill in and label any information about the state of
the kernel stack for the executing process (P1) as it would appear at the point in time stated in the question.
Do not draw anything that has been popped from the stack (is no longer active) and use the same level of
detail used in class and the course notes. If they are present, be sure to show trap frames, switch frames, and
stack frames. (If you happen to remember some function names for stack frames use them but you don’t have
to name them or know how many there are just indicate where they are). Draw the stack so that the high
addresses are at the top of the diagram and low addresses are at the bottom. Recall that the stack grows from
high addresses to low.

a. (5 mark(s)) The process P1 calls int y = getpid() in the funtion R. While in the kernel syscall
function an interrupt occurs. Show what the contents of the stack look like just prior to returning from
the interrupt handler and before popping the stack.

Kernel Stack

b. (5 mark(s)) The process P1 is executing function S, an interrupt occurs, the kernel determines that the
thread has reached its quantum of CPU time and it context switches to a thread of process P2. Show
what the kernel stack looks like for P1 after the context switch to P2.

Kernel Stack

CS350 5 of 9



Problem 5 (12 marks)
Barrier synchronization can be used to prevent threads from proceeding until a specified number of threads
have reached the barrier. Threads reaching the barrier block until the last of the specified number of threads
has reached the barrier, at which point all threads can proceed. Below is a partial pseudocode example of how
barrier synchronization might be used.

/* Used to wait for all mice to be ready to all attack together */

struct barrier *attack_barrier;

/* Used to wait for all mice and the main thread so they can all go to the bar together */

struct barrier *bar_barrier;

main()

{

unsigned int i;

attack_barrier = barrier_create(NUM_MICE);

bar_barrier = barrier_create(NUM_MICE+1);

for (i=0; i<NUM_MICE; i++) {

thread_fork("MightyMouse", mouse, NULL, i);

}

/* Wait here until all threads are ready to go to the bar */

barrier_wait(bar_barrier);

go_to_bar();

}

void

mouse(void *unused, unsigned long mouse_num)

{

unsigned int i;

/* Attack the cats a number of times */

for (i=0; i<ATTACK_COUNT; i++) {

get_ammo(mouse_num);

barrier_wait(attack_barrier); /* wait until all mice are ready to attack */

attack_cats();

}

/* Wait here until all threads are ready to go to the bar */

barrier_wait(bar_barrier);

go_to_bar();

}

Fill in the spaces below (or on the next page) to complete the implementation of a barrier. (You will not
implement barrier destroy). You must only use locks and condition variables for synchronization (as
they are defined in OS/161). To simplify the code, assume that all calls to kmalloc and to create any required
objects always succeed.

CS350 6 of 9



struct barrier {

};

/* Create a barrier that can be used with thread_count threads */

struct barrier *barrier_create(unsigned int thread_count)

{

}

/* Callers wait here until the number of threads specified have */

/* reached this point, then they all proceed. */

void

barrier_wait(struct barrier *b)

{

}

CS350 7 of 9



Problem 6 (9 marks)
Some possibly useful info: 210 = 1 KB, 220 = 1 MB, 230 = 1 GB.

In this question all addresses, virtual page numbers and physical frame numbers are represented in octal.
Recall that each octal character represents 3 bits. Note: to make some numbers easier to read, spaces have
been added between every 3 octal characters. Please also use this convention when providing your answers.

Consider a machine with 39-bit virtual addresses, 33-bit physical addresses and a page size of 262,144 bytes
(256 KB). During a program’s execution the TLB contains the following entries (all in octal). In this example
Dirty means that the page can be dirtied (i.e., written to).

Virtual Page Num Physical Frame Num Valid Bit Dirty Bit

0 061 252 06 125 1 0
6 125 273 01 234 0 0
0 000 061 30 130 1 1
0 000 612 61 252 1 1

If possible, explain how addresses given below (in octal) will be translated and provide the requested
translated address. If a translation is not possible, explain what will happen and why. Show and explain
how you derived your answer. Express the all physical address using all 33-bits and all virtual addresses
using all 39-bits.

a. (3 mark(s)) The physical address that results from a load from virtual address = 6 125 273 127 604

b. (3 mark(s)) The physical address that results from a store to virtual address = 0 000 061 252 127.

c. (3 mark(s)) Can a store be performed on the physical address = 61 252 612 522 If yes, provide the
virtual address used to access this physical address and if not explain precisely why not.

CS350 8 of 9



Problem 7 (9 marks)
Note: to make some numbers easier to read, spaces have been added between every 4 hexidecimal characters.
Please also use this convention when providing your answers.
The structure addrspace shown below describes the address space of a running process on a slightly modified
MIPS processor. The addrspace and modified processor are similar to the dumbvm and MIPS processor
provided in OS161/SYS161. The key differences are that this processor uses 36-bit virtual and physical
addresses and a page size of 64 KB (0x1 0000). In a similar fashion to the 32-bit MIPS OS/161 processor the
36-bit virtual address space on this modified processor is divided into two halves. Virtual addresses from 0 to
0x7 FFFF FFFF are for user programs and virtual address from 0x8 0000 0000 to 0xF FFFF FFFF can not be
accessed while in user mode. Fortunately, this new version of the OS161 kernel now explicitly represents the
stack as segment 3 (note the stack size).

struct addrspace {

vaddr_t as_vbase1 = 0x0 5000 0000; /* text segment: virtual base address */

paddr_t as_pbase1 = 0x0 0010 0000; /* text segment: physical base address */

size_t as_npages1 = 0x200; /* text segment: number of pages */

vaddr_t as_vbase2 = 0x3 0000 0000; /* data segment: virtual base address */

paddr_t as_pbase2 = 0x8 0000 0000; /* data segment: physical base address */

size_t as_npages2 = 0x137; /* data segment: number of pages */

vaddr_t as_vbase3 = 0x4 0000 0000; /* stack segment: virtual base address */

paddr_t as_pbase3 = 0x1 0000 0000; /* stack segment: physical base address */

size_t as_npages3 = 0x18; /* stack segment: number of pages */

};

For an application executing in user space that uses the address space defined above, assume that it is accessing
the specified addresses below. When possible you are to translate the provided address. If the translation
is not possible, explain why it is not possible and what would happen during translation. If the translation
is possible provide the requested translated address and indicate which segment the address belongs to. Use
hexadecimal notation for all addresses and show all 36-bits. Show and explain how you arrived at your result.
Some possibly useful values:

1 * 64 KB = 0x1 * 0x1 0000 = 0x1 0000 2 * 64 KB = 0x2 * 0x1 0000 = 0x2 0000

10 * 64 KB = 0xA * 0x1 0000 = 0xA 0000 16 * 64 KB = 0x10 * 0x1 0000 = 0x10 0000

32 * 64 KB = 0x20 * 0x1 0000 = 0x20 0000

a. (3 mark(s)) Translate the Virtual Address 0x4 0017 6429 to a Physical Address.

b. (3 mark(s)) Translate the Virtual Address 0x0 5200 AB25 to a Physical Address.

c. (3 mark(s)) If possible, determine the user space Virtual Address that could be used to access the
Physical Address 0x8 0128 95FA.

CS350 9 of 9


