
University of Waterloo
CS350 Midterm Examination Model Solution

Winter 2016

1. (26 total marks)

a. (2 marks)
Is it possible for a thread’s userspace stack to contain a switch frame? If yes, write “YES” and
identify - clearly and briefly - a situation in which this could occur. If not, write “NO” and explain
why this cannot happen.

NO. A switch frame is saved as part of a context switch. Context switches between threads are performed
inside the kernel. Switch frames are therefore saved on a thread’s kernel stack. See slides 40 and 41 in the
Processes and the Kernel section of the notes.

b. (4 marks)
In OS161’s fork system call, the kernel must return a ENOMEM error code to the user process if
there is insufficient memory to create a new process. Explain in detail the steps required to return
ENOMEM to the user process. Include in your answer the steps required for the user process to
determine that an error has occured and to retrieve the error code value.

1. sys fork() returns ENOMEM to syscall()

2. syscall sets tf a3 to 1, and tf v0 to ENOMEM. These values are loaded into the a3 and v0 registers
when the process goes back to userspace.

3. The fork userspace library checks the value of a3. If it is not 0, then it copies v0 to errno (a global
variable), and sets v0 to -1 before returning.

4. The fork call returns a -1 (because v0 was set to -1). The user program checks the return value. If it
is -1, it retrieves the error code by reading from errno.

c. (4 marks)
Briefly describe two of the methods (discussed in class) an operating system could use to prevent
deadlocks. Describe the main disadvantage of each method.

See slide 49 in the Synchronization section of the notes.

1. No Hold and Wait: Can lead to livelocks.

2. Preemption: May require killing/restarting other threads.

3. Resource Ordering: Threads may have to acquire locks long before they need to access the shared
variables that the locks are protecting. This can reduce concurrency.

d. (4 marks)
There are two types of internal events (events generated by the user process itself) that may cause
control to transfer from a running user program to the kernel. Name these types of events and
briefly describe each one.

1. Exception: initiated when a process generates some sort of error (if the error is fatal, process is
terminated)

2. System call: process requests a service from OS

e. (2 marks)
There is one type of external event that may cause control to transfer from a running user program
to the kernel. Name and describe that type of event.

Interrupt: hardware generated event requiring an attention of OS (timer interrupt, I/O interrupt,)

f. (2 marks)
Which of the following is shared between threads of the same process? Circle the correct answer(s).

(a) Register values

(b) Local variables

(c) Global variables

(d) Heap memory

(c) and (d)

g. (2 marks)
What is the consequence of having the same frame number stored in more than one page table?

Violates isolation between processes. Two processes can now read/write to the same frame.

h. (2 marks)
In a system with paging, what are the advantages and disadvantages of using a large page size
compared to a small page size?

• adv.: Smaller page tables, large TLB footprint, more efficient I/O

• dis.: Greater internal fragmentation, increased chance of paging in unnecessary data or code

i. (2 marks)
What are the advantages and disadvantages of software handled TLB misses compared to hardware
handled TLB misses.

• adv.: simpler MMU; flexibility of Page Table implementation (can choose structure, format, lookup
strategy without constraints); flexibility of TLB entries replacement (can choose replacement policy)

• dis.: Handling of TLB miss is much slower in this case (requires 2 context switches and cycles used by
exception handler to handle the miss)

j. (2 marks)
Suppose a TLB contains the following mappings (in hexadecimal representation):

page num frame num valid bit

0x0302 0x0007 1
0x1440 0x0031 0
0x208F 0x0014 1
0x20EE 0xFF01 1

Assuming a page size of 4096 bytes, which of the following virtual address will be translated using
the TLB, and not require an access to the page table? Indicate answers with HIT or MISS.

0x14400A2

0x0302F70

0x0401128

0x208FEE4

miss (valid bit not set)

hit 0x0007F70

miss (no entry in the TLB)

hit 0x0014EE4

2. (6 marks)

Consider the application below, which uses the fork, exitand waitpid system calls.

1 int main() {

2 int i, status, rc, total = 0;

3 for (i = 0; i < 10; ++i) {

4 rc = fork();

5 if (rc) {

6 waitpid(rc, &status, 0);

7 total += WEXITSTATUS(status);

8 } else {

9 total = -1;

10 rc = fork();

11 if (rc == 0) {

12 _exit(2);

13 } else {

14 _exit(1);

15 }

16 }

17 }

18 printf("%d\n", total);

19 return 0;

20 }

a. (2 marks)
How many processes, in total, will be created when this program is run, including the original
parent process?

21 (2 process are created in each iteration. 1 original parent process)

b. (2 marks)
Show the output that will be produced when this program runs. Note that the statement:

printf("%d", total);

will print the value of integer variable total.

10

c. (2 marks)
Suppose that line 10 is removed from the program. Show the output that will be produced when
this modified program runs.

20

3. (8 total marks)

Barrier synchronization can be used to prevent threads from proceeding until a specified number of
threads have reached the barrier. Threads reaching the barrier block until the last of the specified
number of threads has reached the barrier, at which point all threads can proceed. Barriers are
commonly used in parallel applications where computation consists of a series of stages, and the
work in each stage is divided among N threads. In these applications, each thread completes its
work independently, waits until all N threads have reached the barrier indicating that they have all
completed their work, exchanges results with the other threads, before starting the next computation
stage. Below is a partial pseudocode example of how barrier synchronization might be used.

/* Used to wait for all compute threads to finish their computation for

the current stage. */

struct barrier *compute_barrier;

/* Used to notify the main thread that all of the compute threads have

finished their computation. */

struct barrier *finish_barrier;

main() {

unsigned int i;

compute_barrier = barrier_create(NUM_COMPUTE);

finish_barrier = barrier_create(NUM_COMPUTE+1);

for (i=0; i < NUM_COMPUTE; i++) {

thread_fork("Compute Thread", compute, NULL, i);

}

/* Wait here until all threads have finished their computation. The main

thread can then aggregate their results. */

barrier_wait(finish_barrier);

aggregate_results();

}

void compute(void *unused, unsigned long compute_num) {

unsigned int i;

/* Perform computation one stage at a time on a portion of the data. */

for (i=0; i < COMPUTE_STAGES; i++) {

perform_computation(compute_num);

/* Wait until all compute threads have completed the current stage */

barrier_wait(compute_barrier);

exchange_results();

}

/* Wait here until all threads have finished their computation. */

barrier_wait(finish_barrier);

}

Explain at the bottom of the page why the following naive barrier implementation based on semaphores
is incorrect. Use the line numbers in barrier wait to identify the point in the code where a context-
switch can lead to errors in a program that uses this barrier implementation. Describe a scenario (list
of steps) that illustrates your explanation of the problem.

/* To simplify the code, assume all calls to kmalloc succeed */

struct barrier {

volatile unsigned int b_threads_reached;

unsigned int b_threads_expected;

struct semaphore* mutex;

struct semaphore* reached_barrier;

};

struct barrier *barrier_create(unsigned int thread_count) {

struct barrier *b = (struct barrier *) kmalloc(sizeof(struct barrier));

b->b_threads_expected = thread_count;

b->b_threads_reached = 0;

b->mutex = sem_create("mutex", 1);

b->reached_barrier = sem_create("reached", 0);

}

1 void barrier_wait(struct barrier *b) {

2 unsigned int i;

3 P(b->mutex);

4 if (++(b->b_threads_reached) < b->b_threads_expected) {

5 V(b->mutex);

6 P(b->reached_barrier);

7 } else {

8 b->b_threads_reached = 0;

9 V(b->mutex);

10 for (i = 1; i < b->b_threads_expected; ++i) {

11 V(b->reached_barrier);

12 }

13 }

14 }

Consider the case where N = 2. Both T1 and T2 (representing threads) start at the first computation stage. T1

calls barrier wait, increments b threads reached, and context switches just before line 6. T2 arrives, enters the
else block in barrier wait, resets the b threads reached to 0, and then calls V(b->reached barrier), which
increments the semaphore to 1. It then continues running the second computation stage, and may eventually
reach barrier wait again before T1 gets to run. On this call to barrier wait, T2 increments b threads reached
to 1, enters the if block, but instead of blocking on P(b->reached barrier), it passes right through because
the semaphore has a value of 1. T2 can therefore enter the third computation stage before T1 has even
entered the second computation stage. This example illustrates the problem with the provided barrier
implementation.

4. (10 total marks)

a. (3 marks)
Suppose a system uses a single-level page table. Suppose further, that the system uses a 46-bit
virtual address and a 32-bit physical address. If the page size is 8KB (213 bytes), how many
entries will the largest page table have? How many frames will this page table occupy if each
page table entry size is 4 bytes? You may express the answers as a power of 2. Is the decision to
have a single level page table a reasonable one? Explain.

Number of entries: 233

Size of the page table: 235 bytes or 222 frames.
Single level page is unreasonable because a maximum size page table is not even going to fit into the RAM
(physical address is 32 bit wide, page table requires 235 bytes).

b. (3 marks)
If you are to use a multi-level page table for the above system, how many levels would you
introduce and why? Describe the format of a virtual address showing the size of each field under
assumption that every sub-table of multi-level page table fits into one frame. You can assume
each page table entry is 4 bytes in size.

3-level page table. 11 bits for each level. Each table has at most 211 entries, and since each entry is 4 bytes,
the table can be at most 213 bytes in size. This fits within a single frame.

c. (4 marks)

Given a process that requires 32KB for code segment, 10KB for data segment and 128KB for stack
segment, what is the minimum and maximum number of frames that will be occupied by your
multi-level page table? Assume each page table entry is 4 bytes in size, and segments must start
at the beginning of a page but can otherwise be placed anywhere in the virtual address space.

If all 3 segments are next to each other, then the process would only need 3 page tables (one for each level),
and therefore only requires 3 frames. If the 3 segments are separated, and each segment spans two entries
in the first level page table, then the process would need 6 second level page tables, and 6 third level pages
tables for a total of 13 page tables that occupy 13 frames.

5. (12 total marks)

You have been hired by the city of Waterloo to help solve a modified version of the “traffic intersection”
problem. In this problem, vehicles are trying to pass through an intersection of two one-way roads,
one north-to-south, the other east-to-west, without colliding. Each vehicle arrives at the intersection
from one of two directions (north or east), called its origin. It is trying to pass through the intersection
and exit in the opposite direction of its origin, called its destination. Turns are not allowed in this
modified version of the problem.

In the original traffic intersection problem, more than one vehicle can be inside the intersection at the
same time as long as their paths will not result in a collision. However, because of on-going construction
causing structual weaknesses in the intersection, only a maximum of 3 cars can be inside the
intersection at the same time in this modified version of the problem. Implement the following
four functions. Global variables can be defined in the provided space. Your solution should be both
fair and efficient.

// Define your global variables here.

#define MAX_CARS_IN_INTERSECTION 3

enum Directions {

north = 0, east = 1

};

typedef enum Directions Direction;

// Volatile is not necessary because of the use of locks and condition variables

// to provide mutual exclusion and synchronization.

struct lock* l;

struct cv* direction_cv[2];

int num_waiting[2];

int num_inside;

Direction inter_direction; // Direction inside the intersection.

Direction opposing_direction(Direction d) {

return (d == north) ? east : north;

}

// Called only once, before any vehicles try to enter the intersection.

void intersection_sync_init(void) {

l = lock_create("lock");

direction_cv[north] = cv_create("North/South CV");

direction_cv[east] = cv_create("East/West CV");

num_waiting[north] = 0;

num_waiting[east] = 0;

num_inside = 0;

inter_direction = north; // Arbitrary starting direction.

}

// Called only once, at the end of the simulation.

void intersection_sync_cleanup(void) {

cv_destroy(direction_cv[north]);

cv_destroy(direction_cv[east]);

direction_cv[north] = NULL;

direction_cv[east] = NULL;

lock_destroy(l);

l = NULL;

}

// Called by a vehicle simulation before a vehicle enters the intersection.

void intersection_before_entry(Direction origin) {

lock_acquire(l);

// Car is waiting (at least momentarily) at the intersection entrance.

num_waiting[origin]++;

// Check if there is at least one car waiting in the opposing direction. If

// there is, then this car, which is just arriving at the intersection,

// should wait in order to provide temporal ordering. Note that a while

// loop is not necessary for this cv_wait since it is only used to modify

// the ordering of cars, and does not affect the safety of the

// intersection.

if (num_waiting[opposing_direction(origin)] > 0) {

cv_wait(direction_cv[origin], l);

} else if (num_inside == 0) {

// Intersection is empty, and no one is waiting in the opposing

// direction. Change the direction of the intersection to allow

// this car to (possibly) go inside the intersection.

inter_direction = origin;

}

// Wait if the number of cars inside the intersection >= the

// max number of cars. Also wait if the direction inside the

// intersection is opposing this car’s direction. Note that

// barging is possible with this solution, but it is unlikely

// to have a large effect on fairness in practice.

while (num_inside >= MAX_CARS_IN_INTERSECTION || inter_direction != origin) {

cv_wait(direction_cv[origin], l);

}

num_waiting[origin]--;

num_inside++;

lock_release(l);

}

// Called by a vehicle simulation after a vehicle leaves the intersection.

void intersection_after_exit(Direction origin) {

lock_acquire(l);

num_inside--;

// Determining the opposing direction.

Direction od = opposing_direction(origin);

if (num_inside == 0) {

// If the intersection is empty, and there are cars waiting

// in the opposing direction, change the direction of traffic.

if (num_waiting[od] > 0)

inter_direction = od;

}

// Broadcast to wakeup the selected direction. A more efficient

// solution would be to just call cv_signal

// min(num_waiting, MAX_CARS_IN_INTERSECTION) number of times.

cv_broadcast(direction_cv[inter_direction], l);

} else if (num_waiting[od] == 0 && num_waiting[origin] > 0) {

// No cars are waiting in the opposing direction. Let another

// car in the same direction go if there is one waiting.

cv_signal(direction_cv[origin], l);

}

lock_release(l);

}

