os161-1.99
 All Data Structures
qdivrem.c
00001 /*-
00002  * Copyright (c) 1992, 1993
00003  *      The Regents of the University of California.  All rights reserved.
00004  *
00005  * This software was developed by the Computer Systems Engineering group
00006  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
00007  * contributed to Berkeley.
00008  *
00009  * Redistribution and use in source and binary forms, with or without
00010  * modification, are permitted provided that the following conditions
00011  * are met:
00012  * 1. Redistributions of source code must retain the above copyright
00013  *    notice, this list of conditions and the following disclaimer.
00014  * 2. Redistributions in binary form must reproduce the above copyright
00015  *    notice, this list of conditions and the following disclaimer in the
00016  *    documentation and/or other materials provided with the distribution.
00017  * 3. Neither the name of the University nor the names of its contributors
00018  *    may be used to endorse or promote products derived from this software
00019  *    without specific prior written permission.
00020  *
00021  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
00022  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00023  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00024  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
00025  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
00026  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
00027  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00028  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00029  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
00030  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
00031  * SUCH DAMAGE.
00032  *
00033  * From:
00034  *      @(#)qdivrem.c   8.1 (Berkeley) 6/4/93
00035  *      NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp
00036  */
00037 
00038 /*
00039  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
00040  * section 4.3.1, pp. 257--259.
00041  */
00042 
00043 #include "longlong.h"
00044 
00045 #define B       ((int)1 << HALF_BITS)   /* digit base */
00046 
00047 /* Combine two `digits' to make a single two-digit number. */
00048 #define COMBINE(a, b) (((unsigned int)(a) << HALF_BITS) | (b))
00049 
00050 /* select a type for digits in base B: use unsigned short if they fit */
00051 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
00052 typedef unsigned short digit;
00053 #else
00054 typedef unsigned int digit;
00055 #endif
00056 
00057 static void shl(digit *p, int len, int sh);
00058 
00059 /*
00060  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
00061  *
00062  * We do this in base 2-sup-HALF_BITS, so that all intermediate
00063  * products fit within unsigned int.  As a consequence, the maximum
00064  * length dividend and divisor are 4 `digits' in this base (they are
00065  * shorter if they have leading zeros).
00066  */
00067 unsigned long long
00068 __qdivrem(unsigned long long ull, unsigned long long vll,
00069           unsigned long long *arq)
00070 {
00071         union uu tmp;
00072         digit *u, *v, *q;
00073         digit v1, v2;
00074         unsigned int qhat, rhat, t;
00075         int m, n, d, j, i;
00076         digit uspace[5], vspace[5], qspace[5];
00077 
00078         /*
00079          * Take care of special cases: divide by zero, and u < v.
00080          */
00081         if (vll == 0) {
00082                 /* divide by zero. */
00083                 static volatile const unsigned int zero = 0;
00084 
00085                 tmp.ui[H] = tmp.ui[L] = 1 / zero;
00086                 if (arq)
00087                         *arq = ull;
00088                 return (tmp.ll);
00089         }
00090         if (ull < vll) {
00091                 if (arq)
00092                         *arq = ull;
00093                 return (0);
00094         }
00095         u = &uspace[0];
00096         v = &vspace[0];
00097         q = &qspace[0];
00098 
00099         /*
00100          * Break dividend and divisor into digits in base B, then
00101          * count leading zeros to determine m and n.  When done, we
00102          * will have:
00103          *      u = (u[1]u[2]...u[m+n]) sub B
00104          *      v = (v[1]v[2]...v[n]) sub B
00105          *      v[1] != 0
00106          *      1 < n <= 4 (if n = 1, we use a different division algorithm)
00107          *      m >= 0 (otherwise u < v, which we already checked)
00108          *      m + n = 4
00109          * and thus
00110          *      m = 4 - n <= 2
00111          */
00112         tmp.ull = ull;
00113         u[0] = 0;
00114         u[1] = (digit)HHALF(tmp.ui[H]);
00115         u[2] = (digit)LHALF(tmp.ui[H]);
00116         u[3] = (digit)HHALF(tmp.ui[L]);
00117         u[4] = (digit)LHALF(tmp.ui[L]);
00118         tmp.ull = vll;
00119         v[1] = (digit)HHALF(tmp.ui[H]);
00120         v[2] = (digit)LHALF(tmp.ui[H]);
00121         v[3] = (digit)HHALF(tmp.ui[L]);
00122         v[4] = (digit)LHALF(tmp.ui[L]);
00123         for (n = 4; v[1] == 0; v++) {
00124                 if (--n == 1) {
00125                         unsigned int rbj;  /* r*B+u[j] (not root boy jim) */
00126                         digit q1, q2, q3, q4;
00127 
00128                         /*
00129                          * Change of plan, per exercise 16.
00130                          *      r = 0;
00131                          *      for j = 1..4:
00132                          *              q[j] = floor((r*B + u[j]) / v),
00133                          *              r = (r*B + u[j]) % v;
00134                          * We unroll this completely here.
00135                          */
00136                         t = v[2];       /* nonzero, by definition */
00137                         q1 = (digit)(u[1] / t);
00138                         rbj = COMBINE(u[1] % t, u[2]);
00139                         q2 = (digit)(rbj / t);
00140                         rbj = COMBINE(rbj % t, u[3]);
00141                         q3 = (digit)(rbj / t);
00142                         rbj = COMBINE(rbj % t, u[4]);
00143                         q4 = (digit)(rbj / t);
00144                         if (arq)
00145                                 *arq = rbj % t;
00146                         tmp.ui[H] = COMBINE(q1, q2);
00147                         tmp.ui[L] = COMBINE(q3, q4);
00148                         return (tmp.ll);
00149                 }
00150         }
00151 
00152         /*
00153          * By adjusting q once we determine m, we can guarantee that
00154          * there is a complete four-digit quotient at &qspace[1] when
00155          * we finally stop.
00156          */
00157         for (m = 4 - n; u[1] == 0; u++)
00158                 m--;
00159         for (i = 4 - m; --i >= 0;)
00160                 q[i] = 0;
00161         q += 4 - m;
00162 
00163         /*
00164          * Here we run Program D, translated from MIX to C and acquiring
00165          * a few minor changes.
00166          *
00167          * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
00168          */
00169         d = 0;
00170         for (t = v[1]; t < B / 2; t <<= 1)
00171                 d++;
00172         if (d > 0) {
00173                 shl(&u[0], m + n, d);           /* u <<= d */
00174                 shl(&v[1], n - 1, d);           /* v <<= d */
00175         }
00176         /*
00177          * D2: j = 0.
00178          */
00179         j = 0;
00180         v1 = v[1];      /* for D3 -- note that v[1..n] are constant */
00181         v2 = v[2];      /* for D3 */
00182         do {
00183                 digit uj0, uj1, uj2;
00184                 
00185                 /*
00186                  * D3: Calculate qhat (\^q, in TeX notation).
00187                  * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
00188                  * let rhat = (u[j]*B + u[j+1]) mod v[1].
00189                  * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
00190                  * decrement qhat and increase rhat correspondingly.
00191                  * Note that if rhat >= B, v[2]*qhat < rhat*B.
00192                  */
00193                 uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
00194                 uj1 = u[j + 1]; /* for D3 only */
00195                 uj2 = u[j + 2]; /* for D3 only */
00196                 if (uj0 == v1) {
00197                         qhat = B;
00198                         rhat = uj1;
00199                         goto qhat_too_big;
00200                 } else {
00201                         unsigned int nn = COMBINE(uj0, uj1);
00202                         qhat = nn / v1;
00203                         rhat = nn % v1;
00204                 }
00205                 while (v2 * qhat > COMBINE(rhat, uj2)) {
00206         qhat_too_big:
00207                         qhat--;
00208                         if ((rhat += v1) >= B)
00209                                 break;
00210                 }
00211                 /*
00212                  * D4: Multiply and subtract.
00213                  * The variable `t' holds any borrows across the loop.
00214                  * We split this up so that we do not require v[0] = 0,
00215                  * and to eliminate a final special case.
00216                  */
00217                 for (t = 0, i = n; i > 0; i--) {
00218                         t = u[i + j] - v[i] * qhat - t;
00219                         u[i + j] = (digit)LHALF(t);
00220                         t = (B - HHALF(t)) & (B - 1);
00221                 }
00222                 t = u[j] - t;
00223                 u[j] = (digit)LHALF(t);
00224                 /*
00225                  * D5: test remainder.
00226                  * There is a borrow if and only if HHALF(t) is nonzero;
00227                  * in that (rare) case, qhat was too large (by exactly 1).
00228                  * Fix it by adding v[1..n] to u[j..j+n].
00229                  */
00230                 if (HHALF(t)) {
00231                         qhat--;
00232                         for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
00233                                 t += u[i + j] + v[i];
00234                                 u[i + j] = (digit)LHALF(t);
00235                                 t = HHALF(t);
00236                         }
00237                         u[j] = (digit)LHALF(u[j] + t);
00238                 }
00239                 q[j] = (digit)qhat;
00240         } while (++j <= m);             /* D7: loop on j. */
00241 
00242         /*
00243          * If caller wants the remainder, we have to calculate it as
00244          * u[m..m+n] >> d (this is at most n digits and thus fits in
00245          * u[m+1..m+n], but we may need more source digits).
00246          */
00247         if (arq) {
00248                 if (d) {
00249                         for (i = m + n; i > m; --i)
00250                                 u[i] = (digit)(((unsigned int)u[i] >> d) |
00251                                     LHALF((unsigned int)u[i - 1] <<
00252                                           (HALF_BITS - d)));
00253                         u[i] = 0;
00254                 }
00255                 tmp.ui[H] = COMBINE(uspace[1], uspace[2]);
00256                 tmp.ui[L] = COMBINE(uspace[3], uspace[4]);
00257                 *arq = tmp.ll;
00258         }
00259 
00260         tmp.ui[H] = COMBINE(qspace[1], qspace[2]);
00261         tmp.ui[L] = COMBINE(qspace[3], qspace[4]);
00262         return (tmp.ll);
00263 }
00264 
00265 /*
00266  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
00267  * `fall out' the left (there never will be any such anyway).
00268  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
00269  */
00270 static void
00271 shl(digit *p, int len, int sh)
00272 {
00273         int i;
00274 
00275         for (i = 0; i < len; i++)
00276                 p[i] = (digit)(LHALF((unsigned int)p[i] << sh) |
00277                     ((unsigned int)p[i + 1] >> (HALF_BITS - sh)));
00278         p[i] = (digit)(LHALF((unsigned int)p[i] << sh));
00279 }
 All Data Structures