- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's grading policy and rules on collaboration.
- Submit your completed solutions to Crowdmark.

1. Definition 1 Let X and Y be sets. Then the intersection of X and Y, denoted $X \cap Y$, is the set of elements of both X and Y :

$$
X \cap Y=\{z \mid z \in X \text { and } z \in Y\}
$$

Definition 2 Let X and Y be sets. Then the union of X and Y, denoted $X \cup Y$, is the set of elements of either X or Y (or both):

$$
X \cup Y=\{z \mid z \in X \text { or } z \in Y \text {, or both }\} .
$$

Definition 3 Let X and Y be sets. Then Y is a subset of X, denoted $Y \subseteq X$, if and only if every element of Y is also an element of X.

Let X, Y and Z be sets. Rigourously prove this set distributivity law:

$$
X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)
$$

CM A01 5% penalty per hour late in submitting
2. Let Σ be a non-empty finite alphabet. Let $x, y \in \Sigma^{*}$.
(a) Prove that, for all integers $i \geq 0$, we have $(x y)^{i} x=x(y x)^{i}$.

CM A01 5% penalty per hour late in submitting
[6] (b) Prove that $x y=y x$ if and only if there exists a word $z \in \Sigma^{*}$ such that $x^{2} y^{2}=z^{2}$.
3. Consider the DFA, M, having alphabet $\Sigma=\{0,1\}$ and defined by the following diagram.

(a) Determine whether or not $w_{a}=0110 \in L(M)$. Briefly justify your answer.
[3] (b) Determine whether or not $w_{b}=10 \in L(M)$. Briefly justify your answer.
[1] (e) Give a brief description of $L(M)$. No justification is required for the correctness of the description.

CM A01 5% penalty per hour late in submitting
4. Draw the diagram of a DFA, NFA or ε-NFA which accepts each of the following languages over $\Sigma=\{0,1\}$, and argue informally why your automaton accepts exactly the language given.
(a) $L_{a}=\left\{w \mid n_{0}(w) \equiv 0 \bmod 2\right\}$ (Recall that $n_{0}(w)$ denotes the number of occurrences of the symbol 0 in the string w.)

Due Fri, May 24, 11:59 PM EST
CS 360 - Spring 2024 CM A01 5% penalty per hour late in submitting
(b) $L_{b}=\left\{w \mid n_{0}(w) \equiv 0 \bmod 2\right.$ and each 0 in w is followed by at least one 1$\}$
5. Let $M=\left(\Sigma, Q, q_{0}, F, \delta\right)$ be a DFA.

Let $\hat{\delta}$ denote the extended transition function of M, as defined in the lecture slides.
(a) Prove that, for any $x, y \in \Sigma^{*}$, and any $q \in Q$, we have

$$
\hat{\delta}(q, x y)=\hat{\delta}(\hat{\delta}(q, x), y) .
$$

(b) Assume that for some state $q \in Q$, and for every $a \in \Sigma$, we have $\delta(q, a)=q$. Prove that $\hat{\delta}(q, x)=q$ holds for every $x \in \Sigma^{*}$.

CS 360 - Spring $2024 \quad$ CM A01 5% penalty per hour late in submitting
[4] (c) Assume that for some state $q \in Q$, and some string $x \in \Sigma^{*}$, we have $\hat{\delta}(q, x)=q$. Prove that, for every $n \geq 0$, we have $\hat{\delta}\left(q, x^{n}\right)=q$.

