- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's grading policy and rules on collaboration.

CM A01

- Submit your completed solutions to **Crowdmark**.
- 1. Definition 1 Let X and Y be sets. Then the intersection of X and Y, denoted $X \cap Y$, is the set of elements of both X and Y:

$$X \cap Y = \{ z \mid z \in X \text{ and } z \in Y \}.$$

Definition 2 Let X and Y be sets. Then the **union of** X and Y, denoted $X \cup Y$, is the set of elements of either X or Y (or both):

$$X \cup Y = \{z \mid z \in X \text{ or } z \in Y, \text{ or both}\}.$$

Definition 3 Let X and Y be sets. Then Y is a subset of X, denoted $Y \subseteq X$, if and only if every element of Y is also an element of X.

Let X, Y and Z be sets. Rigourously prove this set distributivity law:

 $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$

CS 360 - Spring 2024

2. Let Σ be a non-empty finite alphabet. Let $x, y \in \Sigma^*$.

(a) Prove that, for all integers $i \ge 0$, we have $(xy)^i x = x(yx)^i$.

 $\rm CM~A01$

[4]

		Due Fri, May 24, 11:59 PM EST
CS 360 - Spring 2024	CM A01	5% penalty per hour late in submitting
(b) Prove that $xy = yx$ if an	nd only if there exis	ts a word $z \in \Sigma^*$ such that $x^2y^2 = z^2$.

[6]

CM A01 5% penalty per hour late in submitting 3. Consider the DFA, M, having alphabet $\Sigma = \{0,1\}$ and defined by the following diagram.

(a) Determine whether or not $w_a = 0110 \in L(M)$. Briefly justify your answer.

(b) Determine whether or not $w_b = 10 \in L(M)$. Briefly justify your answer.

		Due Fri, May 24, 11:59 PM EST		
CS 360 - Spring 2024	CM A01	5% penalty per hour late in submitting		
(c) Determine whether or not $w_c = 010 \in L(M)$. Briefly justify your answer.				

[3]

[3]

[1]

(d) Determine whether or not $w_d = 101 \in L(M)$. Briefly justify your answer.

(e) Give a brief description of L(M). No justification is required for the correctness of the description.

[4]

- CM A01 5% penalty per hour late in submitting 4. Draw the diagram of a DFA, NFA or ε -NFA which accepts each of the following languages over $\Sigma = \{0, 1\}$, and argue informally why your automaton accepts exactly the language given.
 - (a) $L_a = \{w \mid n_0(w) \equiv 0 \mod 2\}$ (Recall that $n_0(w)$ denotes the number of occurrences of the symbol 0 in the string w.)

		Due Fri, May 24, 11:59 PM EST
CS 360 - Spring 2024	CM A01	5% penalty per hour late in submitting
(b) $L_b = \{ w \mid n_0(w) \equiv 0 \text{ m} \}$	nod 2 and each 0 in \cdot	w is followed by at least one 1}

[6]

5. Let $M = (\Sigma, Q, q_0, F, \delta)$ be a DFA.

Let $\hat{\delta}$ denote the extended transition function of M, as defined in the lecture slides.

(a) Prove that, for any $x, y \in \Sigma^*$, and any $q \in Q$, we have

$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y).$$

[4]

CS 360 - Spring 2024

(b) Assume that for some state $q \in Q$, and for every $a \in \Sigma$, we have $\delta(q, a) = q$. Prove that $\hat{\delta}(q, x) = q$ holds for every $x \in \Sigma^*$.

CS 360 - Spring 2024

(c) Assume that for some state $q \in Q$, and some string $x \in \Sigma^*$, we have $\hat{\delta}(q, x) = q$. Prove that, for every $n \ge 0$, we have $\hat{\delta}(q, x^n) = q$.