• Start as early as possible, and contact the instructor if you get stuck.

• See the course outline for details about the course's marking policy and rules on collaboration.

CM A02

- Submit your completed solutions to **Crowdmark**.
- 1. Regular Expressions

Let $\Sigma = \{0, 1\}$. Give a **rigourous** proof for the equality of languages

$$L((10^*)^*0) = L(0 + 1(0 + 1)^*0).$$

Due Fri, June 7, 11:59 PM EST CM A02 5% penalty per hour late in submitting

2. Closure Properties of Regular Languages

Let B and C be languages over $\Sigma = \{0, 1\}$. Define the binary operation on languages

 $B \stackrel{1}{\leftarrow} C = \{ w \in B \mid \text{ for some } y \in C, n_1(w) = n_1(y) \}.$

Recall that $n_1(w)$ denotes the number of occurrences of the symbol 1 in the string w. For example, if $B = \{010, 101, 111\}$ and $C = \{01, 011, 1111\}$, then $B \stackrel{1}{\leftarrow} C = \{010, 101\}$.

Prove that the class of regular languages is closed under the $\stackrel{1}{\leftarrow}$ operation.

[8]

3. Non-regular languages

Prove that each of the following languages is not regular.

(a)
$$L_a = \{0^i 1^j \mid \gcd(i, j) = 1\}$$
 over $\Sigma = \{0, 1\}$

		Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024	CM A02	5% penalty per hour late in submitting
(b) $L_b = \{a^m \mid m \neq n^2 \text{ for } $	any $n \in \mathbb{N}$ over $\Sigma =$	$= \{a\}$

[4]

Due Fri, June 7, 11:59 PM EST 5% penalty per hour late in submitting

- $\rm CM~A02$ 4. A Non-Regular Language In Which All Long Words Can Be Pumped Let $\Sigma = \{a, b, c\}.$
 - (a) Prove that $L = \{ab^jc^j \mid j \ge 0\}$ is not regular.

		Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024	CM A02	5% penalty per hour late in submitting
(b) Prove that F	$F = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } \}$	if $i = 1$ then $j = k$ is not regular.

[4]

CS 360 - Spring 2024

- (c) Exhibit with proof a choice of a positive integer n, such that, for any $z \in F$ with $|z| \ge n$, we may write z = uvw where
 - $|uv| \leq n$,
 - $|v| \ge 1$ and
 - $uv^i w \in F$, for all $i \ge 0$.

CS 360 - Spring 2024

5% penalty per hour late in submitting

(d) Explain briefly why the results of parts 4b and 4c do **not** contradict the Pumping Lemma for regular languages.

 $\rm CM~A02$

- 5. Testing a Candidate Criterion for Regular Languages Let $\Sigma = \{0, 1\}$ be the alphabet for all languages in this problem.
 - (a) Prove that $L_a = \{w \mid n_0(w) = n_1(w)\}$ is not regular.

[4]

1	CS	360	- S	Sprii	ng	2024
Î		(h)	Dre		the

 $\frac{660 - \text{Spring } 2024}{\text{(b) Prove that } L_b = \{w \mid n_0(w) \neq n_1(w)\} \text{ is not regular.}}$

CS 360 - Spring 2024

 $\rm CM~A02$ (c) Suppose that L is a language over Σ and that there is a fixed integer $k \ge 0$ such that, for every $x \in \Sigma^*$, $xz \in L$, for some string z with $|z| \leq k$. Does it follow that L is regular? Prove your answer.