- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's marking policy and rules on collaboration.
- Submit your completed solutions to Crowdmark.

1. Regular Expressions
[8]
Let $\Sigma=\{0,1\}$. Give a rigourous proof for the equality of languages

$$
L\left(\left(10^{*}\right)^{*} 0\right)=L\left(0+1(0+1)^{*} 0\right) .
$$

2. Closure Properties of Regular Languages
[8] Let B and C be languages over $\Sigma=\{0,1\}$. Define the binary operation on languages

$$
B \stackrel{1}{\leftarrow} C=\left\{w \in B \mid \text { for some } y \in C, n_{1}(w)=n_{1}(y)\right\} .
$$

Recall that $n_{1}(w)$ denotes the number of occurrences of the symbol 1 in the string w. For example, if $B=\{010,101,111\}$ and $C=\{01,011,1111\}$, then $B \stackrel{1}{\leftarrow} C=$ $\{010,101\}$.
Prove that the class of regular languages is closed under the $\stackrel{1}{\leftarrow}_{\leftarrow}$ operation.
3. Non-regular languages

Prove that each of the following languages is not regular.
(a) $L_{a}=\left\{0^{i} 1^{j} \mid \operatorname{gcd}(i, j)=1\right\}$ over $\Sigma=\{0,1\}$

Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024
CM A02 5% penalty per hour late in submitting
(b) $L_{b}=\left\{a^{m} \mid m \neq n^{2}\right.$ for any $\left.n \in \mathbb{N}\right\}$ over $\Sigma=\{a\}$

Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024
CM A02 5% penalty per hour late in submitting
4. A Non-Regular Language In Which All Long Words Can Be Pumped Let $\Sigma=\{a, b, c\}$.
(a) Prove that $L=\left\{a b^{j} c^{j} \mid j \geq 0\right\}$ is not regular.

Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024
CM A02 5% penalty per hour late in submitting
(b) Prove that $F=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and if $i=1$ then $\left.j=k\right\}$ is not regular. $|z| \geq n$, we may write $z=u v w$ where

- $|u v| \leq n$,
- $|v| \geq 1$ and
- $u v^{i} w \in F$, for all $i \geq 0$. Lemma for regular languages.

5. Testing a Candidate Criterion for Regular Languages

Let $\Sigma=\{0,1\}$ be the alphabet for all languages in this problem.
(a) Prove that $L_{a}=\left\{w \mid n_{0}(w)=n_{1}(w)\right\}$ is not regular.

Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024
CM A02 5% penalty per hour late in submitting
(b) Prove that $L_{b}=\left\{w \mid n_{0}(w) \neq n_{1}(w)\right\}$ is not regular.

Due Fri, June 7, 11:59 PM EST
CS 360 - Spring 2024
CM A02 5% penalty per hour late in submitting
[4] (c) Suppose that L is a language over Σ and that there is a fixed integer $k \geq 0$ such that, for every $x \in \Sigma^{*}, x z \in L$, for some string z with $|z| \leq k$. Does it follow that L is regular? Prove your answer.

