- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's marking policy and rules on collaboration.
- Submit your completed solutions to Crowdmark.

1. Context-Free Languages
(a) Let $T_{a}=\{a, b\}$. Give a context-free grammar, G_{a}, which generates the complement, $\left(L_{a}\right)^{\prime}$, of the language $L_{a}=\left\{a^{n} b^{n} \mid n \in 0,1,2, \ldots\right\}$ over T_{a}, and prove that your choice of G_{a} is correct.

$$
L_{b}=\left\{w!x \mid w, x \in\{0,1\}^{*} \text { and } x \text { contains } w^{R} \text { as a substring }\right\}
$$

over T_{b}, and prove that your choice of G_{b} is correct. (For example, $0111!11110 \in$ L_{b}.)
2. Some context-free languages are regular

Let $T=\{0,1\}$. Suppose a language $L \subseteq T^{*}$ is accepted by some PDA, P, by final state (i.e. $L=L(P)$). Suppose further that while processing any word $w \in T^{*}, P$'s stack never contains more than 3 elements of the stack alphabet, Γ. Prove that L is regular.
3. Removing ambiguity in context-free grammars

Define a context-free grammar $G=(V, T, P, S)$, where

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow a S|a S b S| \varepsilon\}$
- $S=S$
(a) Prove that G is ambiguous, by exhibiting two different parse trees, two different leftmost derivations or two different rightmost derivations for the word $a a b \in$ $L(G)$.
[8] (b) Prove that

$$
L(G)=\left\{w \in T^{*} \mid \text { for every prefix } x \text { of } w, n_{a}(x) \geq n_{b}(x)\right\}
$$

4. A pushdown automaton

Define a pushdown automaton, $P=\left(Q, \Sigma, \Gamma, \delta, q, Z_{0}, F\right)$, accepting by final state, with

- $Q=\{q, p\}$
- $\Sigma=\{0,1\}$
- $\Gamma=\left\{Z_{0}, X\right\}$
- $q=$ start state for machine
- $Z_{0}=$ stack start letter (bottom of stack character)
- $F=\{p\}$
and transition function

$$
\begin{aligned}
\delta\left(q, 0, Z_{0}\right) & =\left\{\left(q, X Z_{0}\right)\right\} \\
\delta(q, 0, X) & =\{(q, X X)\} \\
\delta(q, 1, X) & =\{(q, X)\} \\
\delta(q, \varepsilon, X) & =\{(p, \varepsilon)\} \\
\delta(p, \varepsilon, X) & =\{(p, \varepsilon)\} \\
\delta(p, 1, X) & =\{(p, X X)\} \\
\delta\left(p, 1, Z_{0}\right) & =\{(p, \varepsilon)\}
\end{aligned}
$$

(a) Draw a diagram for P.

Due Fri, June 21, 11:59 PM EDT
CS 360 - Spring 2024
CM A03 5% penalty per hour late in submitting
[6] (b) Determine all the instantaneous descriptions of the machine P which can be reached after processing the input word $w=01$. answer.

