- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's marking policy and rules on collaboration.
- Submit your completed solutions to Crowdmark.

1. A pushdown automaton

Give a PDA that accepts the language of even-length words that are not palindromes over the alphabet $\Sigma=\{a, b\}$. Your machine may accept by final state or by empty stack, whichever is more convenient. State explicitly whether your machine accepts by final state or by empty stack. Explain why your PDA is correct.
2. Building a context-free grammar from a PDA

Define a pushdown automaton, $P=\left(Q, \Sigma, \Gamma, \delta, q, Z_{0}\right)$ (which accepts by empty stack), with

- $Q=\{q, p\}$
- $\Sigma=\{0,1\}$
- $\Gamma=\left\{Z_{0}, X\right\}$
- $q=$ start state for machine
- $Z_{0}=$ stack start letter (bottom of stack character)
and transition function

1. $\delta\left(q, 0, Z_{0}\right)=\left\{\left(q, X Z_{0}\right)\right\}$
2. $\delta(q, 0, X)=\{(q, X X)\}$
3. $\delta\left(q, 1, Z_{0}\right)=\left\{\left(p, Z_{0}\right)\right\}$
4. $\delta(q, 1, X)=\{(p, X)\}$
5. $\delta(p, 0, X)=\{(p, \varepsilon)\}$
6. $\delta\left(p, \varepsilon, Z_{0}\right)=\{(p, \varepsilon)\}$
(a) Draw a diagram for P.

CM A04 5% penalty per hour late in submitting
(b) Use the technique described on slides 51-54 of Module 6 to construct a context-free grammar, G, such that $L(G)=N(P)$. In your final grammar, replace the nonterminals from the construction with single capital letters A, B, C, \ldots Simplify your grammar as much as possible after you have completed the construction. You do not have to prove that $L(G)=N(P)$. But you should convince yourself that the equality holds once you have completed the construction and simplification of G.
(c) The construction in part 2 b can introduce some productions which will never resolve all of their variables. Simplify the grammar you found in part 2b by eliminating all such productions. If this leaves some variables without any productions, then eliminate those variables as well.

Due Fri, July 5, 11:59 PM EST
CS 360 - Spring 2024 CM A04 5% penalty per hour late in submitting
[5] (d) Give a "nice" description of $L(G)$, and prove that your description is correct. (You do not need to include this parenthesized part in your solution, but you should also confirm that your description of $L(G)$ makes sense with respect to the definition of the original PDA, P.)
3. The analog of Kleene's Theorem for CFLs and PDAs

Let Σ be an alphabet.
(a) Let D be an arbitrary DFA, with alphabet Σ. Describe a construction for an ε-NFA, E, which, given any input word $w \in \Sigma^{*}$,
i. accepts no non-empty words, and
ii. accepts the empty word, ε, if any only if D accepts w.

Briefly explain why your construction of E is correct.
(b) Let L_{1}, L_{2} be languages over Σ. Define

$$
L_{1} / L_{2}=\left\{w \mid w x \in L_{1}, \text { for some } x \in L_{2}\right\}
$$

Suppose that L_{1} is context-free, and L_{2} is regular. Prove that L_{1} / L_{2} is contextfree. (Hint: use part 3a.)
4. Deterministic PDAs

Suppose that D is a DPDA whose set of final states is F, and that accepts $L(D)$ by final state. Let D^{\prime} be the same DPDA, but with final states $Q \backslash F$ (that is, the accept states of D^{\prime} are those states that are not accept states of D. Is it always the case that $L\left(D^{\prime}\right)$ equals the complement of $L(D)$? Prove your answer.

CM A04 5% penalty per hour late in submitting
5. Recall from Slides 13-17 of Module 5, a grammar for the language $\left\{0^{i} 1^{j} \mid 0 \leq i \leq j\right\}$ is:

$$
G: S \rightarrow \varepsilon|0 S 1| S 1
$$

(a) Use the technique on slides 6-17 of Module 7 to produce a grammar, G^{\prime}, in Chomsky Normal Form, such that $L(G)=L\left(G^{\prime}\right) \cup\{\varepsilon\}$. You do not need to prove this equality of languages: following the algorithm correctly will guarantee this fact.

Due Fri, July 5, 11:59 PM EST
CS 360 - Spring 2024
CM A04 5% penalty per hour late in submitting
(b) Give an explicit derivation, in G^{\prime}, for the word: 00111.

