- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's marking policy and rules on collaboration.
- Submit your completed solutions to **Crowdmark**.
- 1. A double-stack PDA

Let M be an ordinary Turing machine (i.e. M is a single-tape, deterministic TM). Suppose that M accepts (or does not accept) its input strings (i.e. M does **not** compute a function). Let P be a PDA (accepting by final state), having two independent stacks, that both use the same stack alphabet, Γ . P's transition function, δ_P , is therefore of the form

 $\delta_P : Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \times \Gamma \to \text{ finite subsets of } Q \times \Gamma^* \times \Gamma^*.$

Describe how to construct such a P, so that L(P) = L(M) (i.e. prove that every recursively enumerable language can be accepted by a double-stack PDA).

- i. Describe how to define the states (including the final states) of P.
- ii. Describe how to initialize both of P's stacks, at the start of P's execution.
- iii. Then describe how to define δ_P to simulate any single transition from M, inside of P.

2. Reductions

[4]

Let $\Sigma = \{0, 1\}.$

(a) Let L be a language over Σ such that $L \neq \emptyset$ and $L \neq \Sigma^*$. Let L_R be **any** recursive language over Σ . Prove that membership in L_R can be reduced to membership in L.

		Due Tues, July 30, 11:59 PM
CS 360 - Spring 2024	CM A06	5% penalty per hour late in submitting
(b) Let L_{RE} be any recursively enumerable language over Σ . Let L_u be the universal		
language as defined in the lecture slides. (In detail, L_u is the set of pairs (e, w)		
such e is the identifier of	f a Turing machi	ne, M , which accepts the input word,

w.) Prove that membership in L_{RE} can be reduced to membership in L_u .

[4]

3. Decidable languages

Because of the **Church-Turing Thesis**, you only need to describe the required algorithm (e.g. in English or pseudocode) to decide the decision problem, in each part of this question. You do **not** need to provide implementation details for a TM to decide each decision problem.

(a) Consider the language

 $L_a = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) \subseteq L(D_2) \}.$

Prove that (membership in) L_a is decidable.

[4]

CS 360 - Spring 2024

Due Tues, July 30, 11:59 PM CM A06 5% penalty per hour late in submitting

(b) Consider the language

 $L_b = \{ \langle D, G \rangle \mid D \text{ is a DFA}, G \text{ is a CFG}, \text{ and } L(G) \subseteq L(D) \}.$

Prove that (membership in) L_b is decidable.

[3]

4. An undecidable language

Let Σ be a finite alphabet containing the symbol 0.

(a) Give a reduction from membership in the language

 $L_{0+} = \{ w \mid w \text{ represents the Turing machine } M \text{ and } 0 \in L(M) \}$

to the membership in the language

 $L_{\Sigma^*} = \{ w \mid w \text{ represents the Turing machine } M \text{ and } L(M) = \Sigma^* \}.$

CM A06(b) Show that the language L_{0+} from part 4a is undecidable. Do <u>not</u> use Rice's theorem.