
CS 360
Lecture Notes
Spring 2024

Collin Roberts

June 28, 2024

Contents

1 Lecture 01 4
1.1 Introduction to CS 360 . 4
1.2 Terminology . 4
1.3 Languages . 6
1.4 Techniques of Proof . 10

2 Lecture 02 10
2.1 Deterministic Finite Automata 11
2.2 Nondeterministic Finite Automata 14

3 Lecture 03 18
3.1 ε-Nondeterministic Finite Automata 18

4 Lecture 04 24
4.1 Regular Expressions . 25
4.2 Regular Languages . 26

5 Lecture 05 27
5.1 Kleene’s Theorem . 28

6 Lecture 06 33
6.1 Pumping Lemma for Regular Languages 33

1

7 Lecture 07 39
7.1 Closure Rules for Regular Languages 39
7.2 Decision Problems for Regular Languages 43

8 Lecture 08 46
8.1 Context-Free Grammars and Languages 46

9 Lecture 09 53
9.1 Parse Trees . 53
9.2 Ambiguity in Context-Free Grammars - Definitions 56

10 Lecture 10 57
10.1 Ambiguity in Context-Free Grammars - Example 57

11 Lecture 11 65
11.1 Introduction to Pushdown Automata 65
11.2 Computations in a PDA . 68
11.3 Bad things in PDAs . 69
11.4 Language of a PDA . 70

12 Lecture 12 73
12.1 Acceptance By Empty Stack 74

13 Lecture 13 76
13.1 Equivalence of PDAs and CFLs 76

14 Lecture 14 82
14.1 Deterministic PDAs . 82

15 Lecture 15 86
15.1 A Normal Form For CFGs . 86

16 Lecture 16 93
16.1 Pumping Lemma for CFLs . 93

17 Lecture 17 99
17.1 Closure Rules for CFLs . 99
17.2 Quick Review of Decidability/Undecidability 102
17.3 Decision Problems for CFLs 103

2

18 Lecture 18 105
18.1 Limits of Computation . 105
18.2 Introduction to Turing machines 105
18.3 Formal Definition of a Turing Machine 106

19 Lecture 19 107
19.1 Formal Definition of a Turing Machine 107

20 Lecture 20 112
20.1 Programming Turing machines 112
20.2 Computable functions . 113
20.3 Using Subroutines . 115

21 Lecture 21 117
21.1 Variations on a Turing machine 117

21.1.1 Multiple Tapes . 117
21.1.2 Multiple Tape Heads 119
21.1.3 Non-Determinism . 121

22 Lecture 22 122
22.1 An Undecidable Language . 122
22.2 Other Undecidable Languages 125

23 Lecture 23 127
23.1 Closure Rules for TM languages 127
23.2 Reductions . 128
23.3 Other Undecidable Problems about Turing machines 129
23.4 Rice’s Theorem: . 131

24 Lecture 24 133
24.1 Reductions, Revisited . 133
24.2 Decision problems about CFGs and CFLs (Optional) 134

24.2.1 Post’s Correspondence Problem (Optional) 134
24.3 Course Wrap-up . 137
24.4 Course Evaluations . 137

3

1 Lecture 01

Outline
1. Introduction to CS 360 - Course Outline, M1 1-17
2. Terminology - M1 18-21
3. Languages - M1 22-28
4. Techniques of Proof - M1 29-39

1.1 Introduction to CS 360

1. Refer to the Course Outline and M1 slides 1-17 for the details.
2. I will lecture on the document camera, with the text and old lecture

slides as resources.
3. I will announce pre-reading for all the future lectures by email.

1.2 Terminology

Definition 1.2.1. An alphabet is a non-empty finite set of symbols, usually
denoted Σ.

Examples:
1. Binary alphabet: Σ = {0, 1} Note, a surprising amount of work can be

done over this small alphabet.
2. Latin alphabet: Σ = {a, b, . . . , z}
3. Unary alphabet: Σ = {1}

Q: Why do we require that Σ be non-empty?
A:

1. If we allow Σ = ∅, then the only possible word over Σ is ε, the empty
word, i.e. the word of no alphabet symbols.

2. The language {ε} is not very interesting.
3. Further, we can already construct the empty word, ε, over any alpha-

bet.

Definition 1.2.2. A string (a.k.a. word) is an ordered sequence of alphabet
symbols.

Examples:
1. 1010110 (Binary)
2. rover (Latin)

4

Notation / Conventions:
1. Denote the length of the string x (i.e. the number of alphabet symbols

composing x) by |x|.
2. Denote the empty string (i.e. the string of no symbols) by ε.

Remarks:
1. In CS 360, all strings have finite lengths.
2. By definition, |ε| = 0.
3. ε is never an alphabet symbol. ε indicates the absence of any alphabet

symbols.
4. ε can be formed over any alphabet.

Q: Fix some finite non-empty Σ. Does the power set of Σ contain ε?
A: No. But it does contain ∅. E.g. let Σ = {0, 1}. Then P (Σ) =
{∅, {0}, {1}, {0, 1}}. Observe that P (Σ) is always a subset of the languages
over Σ.
Remember that ε and ∅ are two different things. ε is a word; ∅ is a language.
The cardinality of {ε} is 1; the cardinality of ∅ is 0.
Manipulating Strings

1. Concatenation: One string after another. (e.g. if x = car, y = rot,
then xy = carrot.)
Observations:

εε = ε

εk = ε, for any k ∈ N
εx = x, for any x

xε = x, for any x

2. Powers: Let k ∈ N. (Our convention in CS 360 will be that the first
natural number is 0.) Let x be a string. Then xk is k copies of x,
concatenated together. (Convention: x0 = ε, for any x.)

3. Prefixes: x is a prefix of y if y = xz, for some z. In other words a
prefix of y is the first k characters of y, for some k ≥ 0. Remark: ε is
a prefix of every string.

4. Suffixes: x is a suffix of y if y = zx, for some z. In other words a
suffix of y is the last k characters of y, for some k ≥ 0. Remark: ε is
a suffix of every string.

5. Substrings: x is a substring of y if y = zxw, for some z and w. A
substring can be fully described
(a) by its starting position and length, or

5

(b) by its starting and ending positions.
Remark: Every string x is a prefix, suffix and substring of itself.

6. Counting characters: nb(x) = # of times the alphabet symbol b is
found in x.
Example: nb(banana) = 1, na(banana) = 3.
(a) Q: Is nε(x) well-defined, for some (any) string x?

A: No. Formally, ε is never included in any alphabet. Practically,
there is no way to make this expression unambiguous. Asking for
nε(x) is analogous to asking how many factors of 1 can be pulled
from some integer z.

(b) Q: Can we extend this definition to nw(x), where w is a word?
A: No. There are many problems associated with attempting to
do this, e.g.
i. Should naba(ababa) be 1, or 2? Do occurrences of the word

have to be non-overlapping?
ii. We must at least enforce that the desired word be non-empty,

for the above reason.
7. Reversing a string: xR = x written in reverse order.

Example: if x = stressed, then xR = desserts. Not x to the power
of R!

8. Palindromes: x a palindrome if x = xR, e.g. x = radar.
Remarks:

1. The length of a concatenation = sum of the individual lengths:

|xy| = |x|+ |y|.

Questions and Answers:
1. Is ε an alphabet symbol?

Answer: No. Every alphabet symbol must have length 1, but |ε| = 0.
2. Does every alphabet contain ε?

Answer: No, as above.

1.3 Languages

Definition 1.3.1. Let Σ be an alphabet. A language over Σ is any set of
words constructed using symbols from Σ.

Notation: Denote by Σ∗ the set of all words constructed using symbols
from Σ.

6

Examples of Languages:
1. The following sets are languages over Σ = {0, 1}:

(a) {0, 1, 010, 001001, 0101}
(b) {ε, 0, 00, 000, . . .}

2. The following sets are languages over the Latin alphabet:
(a) {car, rot, carrot, fish}

Questions and Answers:
1. Does every language contain ε?

Answer: No. For example, two of the above three examples of lan-
guages do not contain ε.

2. Does a prefix of a string have to be over the same alphabet as the string
itself?
Answer: Yes.

3. Does a prefix of a string have to be a member of the same language as
the string itself?
Answer: No. The notions of prefix/suffix/substring of a given string,
are completely separate from the question of to what language the
given string might belong. For example, consider the above language
L = {car, rot, carrot, fish}. Then fish ∈ L, however fi is a prefix of
fish, and clearly fi /∈ L.

4. Can two languages be equal?
Answer: Yes. In fact, much of our work in CS 360 will be to prove
that two languages, L1, L2, described in seemingly different ways, are
equal (equal as sets, i.e. they contain exactly the same words).

5. Does the finiteness of alphabets and strings imply that all languages
must be finite?
Answer: No. For example, the language {ε, 0, 00, 000, . . .} is infinite.

Remarks:
1. Why we insist that Σ is non-empty: If Σ = ∅, then the only

possible languages over Σ are ∅ and {ε}. There is not much to study
here! Q: is ∅ = {ε}? A: No. These sets have different cardinalities.

2. Since Σ is non-empty, therefore Σ∗ is always infinite. If a ∈ Σ, then Σ∗

contains the infinite subset {ε, a, aa, aaa, . . .}, hence it must be infinite.
3. By definition, any language L over Σ is a subset of Σ∗.
4. A language can be finite or infinite.
5. We can describe a language by listing its elements if it is finite, or in

any other unambiguous way if it is infinite.

7

Definition 1.3.2. A class of languages is a set of languages.

Questions and Answers:
1. Does a class have to contain only distinct languages?

Answer: Yes. A class is a set after all. When we define a set, we are
only interested in which elements belong to that set, regardless of order
or possible repetitions.

Examples:
1.

C = {{1, 11, 111, 1111, 11111, . . .},
{0, 00, 000, 0000, 00000, . . .},
{0, 1, 00, 11, 000, 111, . . .},
{ε}}

Remarks:
1. We will always fix our alphabet Σ, before doing anything else. We can

make Σ as large as we need in any particular example.
2. Be careful with your set theory notation. Make it clear to your reader

what is what. See the lecture slides for common pitfalls.
(a) Make sure you understand the difference between ∅ and {ε}!
(b) A string is not a member of a class of languages.

i. Strings are members of languages.
ii. Languages are members of classes.
iii. The only class that is also a language: ∅

(c) L = {ε} is a language.
(d) The language L can be part of a class of languages (it is part of

C).
(e) ε cannot be part of a class of languages. (It is a word.)

3. Since languages are just sets, we can take unions, intersections and
complements of languages. To compute complements correctly, we need
to be clear about the “big set” inside of which all languages over Σ live:
it will be Σ∗. Then for any langauge L over Σ, we always have that the
complement L′ = Σ∗ \ L is another langauge over Σ.

4. Concatenations: Let L and M be languages. Then

LM = {xy|x ∈ L, y ∈ M}.

Examples:

8

(a) L = {love, true}, M = {ε, ly, r}
LM = {love, true, truely, lovely, lover, truer}

(b) Let Σ = {0, 1}. Let L = {0, 00, 000, . . .} and M = ∅. I claim
that LM = ∅. Why? Recall that LM = {xy|x ∈ L, y ∈ M}.
Since M = ∅, it is not possible to find a y ∈ M . Thus we cannot
construct any concatenation xy of the required form to lie in LM .

(c) Let Σ = {0, 1}. Let L = {0, 00, 000, . . .} and M = {ε}. Q: What
is LM this time? A: LM = L (proved soon)

5. Powers: Let k ∈ N. Lk is k copies of L concatenated together, as in 4
above.
Remarks: For any L,
(a) L0 = {ε}.
(b) L1 = L.
Examples:
(a) If L = {sorta, kinda}, then

L2 = {sortasorta, kindakinda, sortakinda, kindasorta}
6. Kleene star operator (so named after S.C. Kleene):

(a) L∗ =
⋃∞

i=0 L
i = L0 ∪ L1 ∪ L2 ∪ · · · .

(b) L+ =
⋃∞

i=1 L
i = L1 ∪ L2 ∪ L3 ∪ · · · .

Examples:
(a) If L = {sorta, very}, then

� L∗ = {ε, sorta, very, sortavery, verysorta, . . .}, and
� L+ = {sorta, very, sortavery, verysorta, . . .}.

Remarks:
(a) In general, L+ = LL∗.
(b) The proof is left as an exercise.

Examples of Recursively Defined Objects
1. the natural numbers, N (base: n = 0, otherwise n = s(m), for some

natural number, m, where s is the successor function). Inducting on
this recursive structure leads to POMI.

2. in CS 245, syntactically correct propositional formulas. Inducting on
this structure requires POSI.

3. a word w over some alphabet Σ (base w = ε, otherwise w = xa, for some
alphabet symbol a and some word x). We’ll need this setup soon, when
we define the extended transition function for a deterministic
finite automaton (DFA).

Questions and Answers
1. Why is this base case allowed, when ε is never part of any alphabet?

9

A: ε is a word over any alphabet. It is simply the word containing no
letters from the chosen alphabet.

1.4 Techniques of Proof

Three important proof ideas:
1. In CS 360, we often need to prove that two languages, L1 and L2, are

equal. Since languages are just sets, this means proving that the sets
are equal. To prove that language L1 equals language L2, show L1 ⊆ L2

and L2 ⊆ L1.
Example: Prove that LM = L in the earlier example (where M =
{ε}).
Recall we must prove LM ⊆ L and L ⊆ LM .
Proof that LM ⊆ L:

� Let xy ∈ LM be arbitrary.
� In other words, let x ∈ L and y ∈ M be arbitrary.
� Because M = {ε}, therefore y = ε.
� Then xy = xε = x ∈ L.

Proof that L ⊆ LM :
� Let x ∈ L be arbitrary.
� Then x = xε ∈ LM .

2. To prove a statement is false, one counterexample is enough.
Example: Is it true that every natural number which is congruent to
0 modulo 3 is congruent to 0 modulo 6?
Answer: No.
Counterexample: The natural number 9 is congruent to 0 modulo
3, but is not congruent to 0 modulo 6. Remember: A single case that
is not true proves a ∀-conjecture false.

3. To prove some statement about all words in some language L (over
some Σ) is true, induct on the structure of w. This can be
(a) induction on |w|, if we have nothing else to go on, or
(b) induction on the structure of w ∈ L, depending on how L is

defined.

2 Lecture 02

Outline

10

1. Deterministic Finite Automata - M2 1-13
2. Nondeterministic Finite Automata - M2 14-30

2.1 Deterministic Finite Automata

Definition 2.1.1. A deterministic finite automaton (DFA) is a model
of a computer consisting of five ingredients:

1. Σ: an alphabet (for input words)
2. Q: a finite set of computation states
3. δ : Q× Σ → Q: a transition function

� Important: In a DFA, there must be a transition defined for
every state and for every alphabet symbol.

4. q0 ∈ Q: a start state
5. F ⊆ Q: a set of accept (final) states

Intuition:
1. A DFA moves from one state to another as it reads each symbol in its

input word.
2. At the end of the input, the machine either accepts or rejects the

input, depending on whether the terminating state belongs to F , or
not.

Vital constraints:
1. A DFA cannot work backward in its input; it can only go forward.
2. A DFA’s only memory is its current state; aside from that, it has

forgotten everything seen so far.
Example:

// q0

1

		

0 // q1

1

		

0 // q2

0,1

		

1. Σ = {0, 1},
2. Q = {q0, q1, q2},
3. δ is defined as in the picture.

It includes (q0, 0) 7→ q1
4. initial/starting state = q0,
5. F = {q1}.

This DFA accepts the language of words over Σ = {0, 1}, having exactly
one 0 symbol (i.e. L(1∗01∗)).
Question: How would you prove that?

11

Definition 2.1.2. Let D be a DFA and let w be a word. We say that D
accepts w if D terminates in an accept state after processing w.

We need the next definition to make this precise.
Intuitively, we want δ̂(q, w) to be the state we terminate in if we start at
state q and follow δ for each letter in the word w in turn. To make this
work for all words w, we must define the extended transition function,
δ̂, recursively.

Definition 2.1.3. δ̂(q, w) is defined recursively, as follows:
1. δ̂(q, ε) = q, for all states q.
2. Otherwise, if |w| > 0, then we can write w = xa, for some alphabet

symbol, a, and some word x over Σ. Then define δ̂(q, w) = δ(δ̂(q, x), a).

Then we can make Definition 2.1.2 above precise by saying that D accepts
w if δ̂(q0, w) ∈ F .

Lemma 2.1.4. Let D = (Σ, Q, q0, F, δ) be a DFA, with extended transition
function δ̂. Let q ∈ Q and a ∈ Σ be arbitrary. Then δ̂(q, a) = δ(q, a), i.e. δ̂
agrees with δ for any state q and on any single alphabet symbol a.

Proof.

δ̂(q, a) = δ̂(q, εa)

= δ(δ̂(q, ε), a)

= δ(q, a).

Example: Letting M be our earlier DFA:

// q0

1

		

0 // q1

1

		

0 // q2

0,1

		

Show that M accepts 1011.

12

Solution: By the shape of M and by the refined Definition 2.1.2, we need
to show that δ̂(q0, 1011) = q1. We compute

δ̂(q0, 1011) = δ(δ̂(q0, 101), 1) (1)

= δ(δ(δ̂(q0, 10), 1), 1) (2)

= δ(δ(δ(δ̂(q0, 1), 0), 1), 1) (3)

= δ(δ(δ(δ(δ̂(q0, ε), 1), 0), 1), 1) (4)

= δ(δ(δ(δ(q0, 1), 0), 1), 1) (5)

= δ(δ(δ(q0, 0), 1), 1) (6)

= δ(δ(q1, 1), 1) (7)

= δ(q1, 1) (8)

= q1 (9)

∈ F. (10)

Questions and Answers:
1. Are we not processing backwards here?

A: No. Applying the definition of δ̂ is not processing anything. From
line 5 onwards, we use δ repeatedly to process forward through the
input word.

Definition 2.1.5. Let M = (Q, δ,Σ, q0, F) be a DFA, with extended transi-
tion function δ̂. The language of M, denoted L(M) is the set of all words
accepted by M :

L(M) =
{
w ∈ Σ∗ | δ̂(q0, w) ∈ F

}
.

Terminology: L(M) can be called:
1. The language of the DFA M
2. The language accepted by the DFA M
3. The language recognized by the DFA M

Example: See lecture slides for an example of a DFA that accepts all binary
strings which are the binary representation of a multiple of 3.
We are going to prove a theorem soon that FAs accept a specific class of
languages, called regular languages.

� That should be robust: changes to an FA should not invalidate the
property.

� So we will change FAs in a variety of small and large ways.
� The first major change is nondeterminism.

13

Questions and Answers:
1. Is the only difference between δ and δ̂ the types of their arguments?

A: Yes.
(a) Recall that δ : Q×Σ → Q, i.e. it takes a (state, alphabet symbol)

pair.
(b) By contrast, δ̂ : Q× Σ∗ → Q, i.e. it takes a (state, word) pair.

2.2 Nondeterministic Finite Automata

� We enhance a DFA to create and NFA: given a state and an alphabet
symbol, transition to some set of states (not necessarily a single state,
as in a DFA).

� We will now need to keep track of multiple threads.
An Example: L = {all words with 00 as the last two symbols}

// q0

0,1

		

0 // q1
0 // q2

Questions and Answers:
1. Do we need to define outgoing transitions for the symbol 1 from states

q1 and q2?
Answer: No. See the remark immediately following the definition of
δ for an NFA.

Definition 2.2.1. NFA defined by 5 parameters
1. Σ = input alphabet
2. Q = finite set of computation states
3. q0 = start state
4. F ⊆ Q = accept states
5. δ = transition function

� Important: In an NFA, there are 0,1, or multiple transitions
defined for every (state, alphabet symbol) pair. δ(q, a) is a set of
states, not a single state as in a DFA. If a thread reaches a state
which has no outgoing transition for the given input symbol, then
that thread crashes; it proceeds no further.

Differences from DFAs:
1. δ : Q× Σ → {subsets of Q}.

14

� Recall notation: 2Q = {subsets of Q} = power set of Q.
� Based on a state in Q and an input letter from Σ, several states
may now be now active in Q.

� (Different from DFA, where it is from Q× Σ → Q.)
2. δ̂(q, w) = all states that we can reach from start state q processing the

input word w.
3. δ̂: function Q× Σ∗ → 2Q.
4. The NFA accepts whenever any state path from q0 terminates in an

accept state.
Here is the definition for the extended transition function, δ̂, for an NFA.

Definition 2.2.2. 1. Base case: δ̂(q, ε) = {q}.
2. Recursive case: If |w| > 0, then we may write w = xa, where |a| = 1.

� Then define δ̂(q, xa) =
⋃

p∈δ̂(q,x) δ(p, a). (defining δ̂(q, xa) = δ(δ̂(q, x), a)

doesn’t work because δ̂(q, x) is a set, not necessarily a single state.)
– Note: This definition handles threads that crash correctly.

* A thread that crashes has no outgoing transition for (p, a).
* In other words, δ(p, a) = ∅.
* But then, δ(p, a) contributes nothing to ∪p∈δ̂(q,x)δ(p, a) =

δ̂(q, xa), reflecting the fact that the thread has crashed and
proceeds no further.

Definition of acceptance in an NFA:

Definition 2.2.3. An NFA N accepts a word w if δ̂(q0, w) ∩ F ̸= ∅.

“When processing w, at least one thread terminates in an accept state.”
Definition of the language of an NFA:

Definition 2.2.4. � The language of the NFA N = (Σ, Q, q0, F, δ) is:

L(N) =
{
w ∈ Σ∗|δ̂(q0, w) ∩ F ̸= ∅

}
,

� “all words accepted by the NFA”.

Theorem 2.2.5. Let L be a language that is accepted by an NFA, N . Then
L is accepted by some DFA.

“NFAs are no more powerful than DFAs”.
Outline of proof

15

1. Given an NFA N , construct a DFA, D, from N .
2. Then, show that L(D) = L(N).

Remember:
1. The machine D does not have to have the same states as N , just the

same alphabet and language!
2. See the motivating example in the slides of the subset construction

we are about to generalize for our proof.

Proof. Let N = (Σ, QN , q0, FN , δN) be any NFA. Construct a new DFA D =
(Σ, QD, {q0}, FD, δD) , with these parameters:

� QD is the set of subsets of QN , which is denoted 2QN in the lecture
slides.

� Let D’s initial state be {q0}, where q0 is the initial state of N . This is
a legal state in QD (it is a particular subset of the states QN).

� FD = {S ∈ QD | S ∩ FN ̸= ∅}. (Recall by the definition of QD, any
S ∈ QD is some subset of the set QN of states of N .)

� and a more complicated transition function. For any S ∈ QD, and any
a ∈ Σ, define:

δD(S, a)

= {all states reachable in N from S when we read a}
=

⋃
p∈S

δN(p, a).

Now we must show that L(D) = L(N).
1. w ∈ L(D) if and only if δ̂D({q0}, w) ∈ FD.
2. w ∈ L(N) if and only if δ̂N(q0, w)∩FN ̸= ∅. By the definition of FD, 1

is equivalent to:
3. w ∈ L(D) if and only if δ̂D({q0}, w) ∩ FN ̸= ∅.

Using 2 and 3, to show that w ∈ L(D) if and only if w ∈ L(N), it suffices to
show that δ̂D({q0}, w) = δ̂N(q0, w), for any word w ∈ Σ∗.

Proof: By induction on |w|.
1. Base case (|w| = 0): Thus w = ε.

16

� Then

δ̂D({q0}, ε)
=︸︷︷︸

D is a DFA

{q0}

=︸︷︷︸
N is an NFA

δ̂N(q0, ε).

2. Inductive case (|w| > 0):
� The inductive hypothesis is that, for every x ∈ Σ∗ with |x| < |w|
, we have δ̂D({q0}, x) = δ̂N(q0, x).

� Since |w| > 0, we may write w = xa, for some x ∈ Σ∗ and a ∈ Σ.
� Then the induction hypothesis applies to x.
� We compute

δ̂D({q0}, w) =︸︷︷︸
w=xa

δ̂D({q0}, xa)

=︸︷︷︸
Definition of δ̂D for the DFA D

δD(δ̂D({q0}, x), a)

=︸︷︷︸
induction hypothesis

δD(δ̂N(q0, x), a)

=︸︷︷︸
Definition of δD

⋃
p∈δ̂N (q0,x)

δN(p, a)

=︸︷︷︸
Definition of δ̂N

δ̂N(q0, xa)

=︸︷︷︸
w=xa

δ̂N(q0, w).

Remarks:
1. Nothing in the argument depended on any special properties of q0. We

could run the argument with any q. Thus we actually proved

δ̂ ({q}, w) = δ̂(q, w),

for any w ∈ Σ∗.

17

2. The opposite direction is easy: DFAs are NFAs! (Well, we must change
δ trivially, so that the NFA transitions to a single state correctly reflect
the original DFA definition.)

3. Although Theorems 2.2.5 and 3.1.7 will not appear on exams, ideas
and techniques from these proofs are fair game.

3 Lecture 03

Outline
1. ε-Nondeterministic Finite Automata - M2 31-44

Q & A
1. Is it correct that, for some DFA, M , ε ∈ L(M) if and only if M ’s initial

state, q0, is also a final state of M?
A: Yes!

2. Why do we use the notation 2Q = {all possible subsets of Q} = P (Q),
the power set of Q?
A: For intuition, start with the simplest case, in which Q is finite.
Write Q = {q1, . . . , qn}. Create a “flag” to indicate the inclusion (or
not) for each qi: {

1 if qi is included
0 if qi is excluded

Observe that every subset of Q corresponds 1-1 with an n-digit binary
string. So there are 2|Q| possible combinations.

3. When constructing D from N , can we get a crash state in D, violating
the definition of a DFA?
A: No. If all threads, from some subset of N ’s states crash, this corre-
sponds with an arrow to

∅

0, 1

in the DFA picture.

3.1 ε-Nondeterministic Finite Automata

� Sometimes in designing an NFA, it is handy to have transitions that

18

happen automatically, without reading any letters of the input.
� Machine models that allow this are ε-NFAs.

Definition 3.1.1. An ε-NFA is a 5-tuple, like an NFA. The only difference
is transition function: δ is now a function: Q×(Σ∪{ε}) → 2Q. (Transitions
may exist that do not consume input letters.)

Example: The ε-NFA

// q0

0,1

		

0 // q1
1,ε
// q2

accepts binary words ending with 0 or with 01. (We could do this without
ε-transitions, by making the second state an accept state.)
Defining the ε-closure of a state:
We want Eclose(p) to be all states reachable starting from p only using
ε-transitions. This motivates the following definition.

Definition 3.1.2. Let E be an ε-NFA, having a state, p.
� Then define Eclose(p) recursively:

1. (Base) p ∈ Eclose(p)
2. (Recursive) If q ∈ Eclose(p), then so are all of the states in

δ(q, ε).
The set Eclose(p) is called the ε-closure of the state p.

Defining the ε-closure of a set of states

Definition 3.1.3. Let E be an ε-NFA, having S ⊆ QN . Then define Eclose(S)
via:

Eclose(S) =
⋃
s∈S

Eclose(s).

Lemma 3.1.4. For an ε-NFA E, having states Q, a subset S ⊆ Q and a
decomposition S =

⋃
i Si,

⋃
i

Eclose (Si) = Eclose

(⋃
i

Si

)
,

(i.e. taking ε-closure commutes with taking set unions).

19

Proof.

⋃
i

Eclose (Si) =︸︷︷︸
Definition of Eclose(Si)

⋃
i

(⋃
s∈Si

Eclose(s)

)
=︸︷︷︸

S=
⋃

i Si

⋃
s∈S

Eclose(s)

=︸︷︷︸
Definition of Eclose(S)

Eclose(S)

=︸︷︷︸
S=

⋃
i Si

Eclose

(⋃
i

Si

)
. □

Definition 3.1.5. We define δ̂ for ε-NFA’s, also recursively.
1. Base case: δ̂(q, ε) = Eclose(q):

i.e. states reachable from q via ε-transitions alone
2. Inductive case: Suppose that w = xa, where a ∈ Σ.

(Note: a cannot be ε, which is not a member of Σ.)
(a) Let P = δ̂(q, x), i.e. P is the set of all states in Q that we can

get to by following either edges for the letters of x or ε-transitions
(including ε-transitions at the end of x).

(b) Then, we must follow the transitions for the alphabet symbol a:
Let R =

⋃
p∈P δ(p, a): then R has all of the states we can get to

from P after following a transition for a.
(c) Last, we might have some more ε-transitions.

(d) So, define δ̂(q, w) = Eclose(R) = Eclose
(⋃

p∈δ̂(q,x) δ(p, a)
)

Definition 3.1.6. � Language of an ε-NFA:

L =
{
w ∈ Σ∗ | δ̂(q0, w) ∩ F ̸= ∅

}
� That is, δ̂(q0, x) includes an accept state.
Q: Are ε-NFAs more powerful than DFAs?

A: No.

Theorem 3.1.7. Given an ε-NFA E, there exists an ordinary DFA D such
that L(D) = L(E).

Remarks:

20

1. This is not very surprising: we must show that we can include the
ε-transitions of E in the transition function δD for D.

2. (The other direction is just by definition: a DFA is an ε-NFA, once we
make some trivial changes to the structure of δ so that it produces a
1-element set when it reads in a symbol, and the empty set when it
reads in ε.)

3. To prove the theorem, we must construct a DFA,D, accepting language
L(E).
(a) Write E = (Σ, QE, q0, FE, δE).
(b) We will construct D = (Σ, QD, q0, FD, δD).

Proof. � Both machines use the same alphabet, of course.
� We use the subset construction, as when we built the DFA for an NFA.

1. QD = {all possible subsets of states from QE}
2. FD = {S ∈ QD | S ∩ FE ̸= ∅}
3. The starting state is qD = Eclose(q0). We start having implicitly

taken ε-transitions from the starting state q0 of E.
4. Transition function. δD:

– From one DFA state, S (which is a set of states in E), if we
process one letter, a, in the new DFA, we should mimic this
behaviour from E:
* follow any edges labelled a, and
* take any ε-transitions

– From any one state from E, say p, this then takes us to:
* δE(p, a), and then to
* Eclose(δE(p, a))

5. And we therefore want the union over all states p ∈ S:

δD(S, a) =
⋃
p∈S

Eclose(δE(p, a)).

Subset Construction Example:
� Here we demonstrate one step in the subset construction for the earlier
small example of an ε-NFA:

// q0

0,1

		

0 // q1
1,ε
// q2

21

� The subset construction gives us

QD = {∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}}
qD = Eclose({q0}) = {q0}

� Now we determine δD(S, a), where S = {q0, q1, q2} (the state we reach
from {q0} upon reading 0) and a = 1.

� Computing Eclose(δE(p, a)) for each p ∈ S gives

Eclose(δE(q0, 1)) = Eclose(q0) = {q0}
Eclose(δE(q1, 1)) = Eclose({q2}) = {q2}
Eclose(δE(q2, 1)) = Eclose(∅) = ∅

� Hence the target state coming from the subset construction is {q0, q2}.
� The construction says that we need to add to the transition function
for D: δD ({q0, q1, q2}, 1) = {q0, q2}.

� Now to complete the transition function for D, we do this same con-
struction for each of the 8 choices for S (above) and each alphabet
symbol from Σ = {0, 1}.

Now, to show equality of the languages of the two automata, we must show
that if x is accepted by E, then x is accepted by D, and vice versa.

� (One particular concern: do we do the right thing for the word ε?)
Goal: Prove that w ∈ L(E) if and only if w ∈ L(D).

1. w ∈ L(E) if and only if δ̂E(q0, w) ∩ FE ̸= ∅.
2. w ∈ L(D) if and only if δ̂D(Eclose(q0), w) ∈ FD. Using the definition

of FD, rewrite 2 as
3. w ∈ L(D) if and only if δ̂D(Eclose(q0), w) ∩ FE ̸= ∅.

Now using 1 and 3, to show that w ∈ L(E) if and only if w ∈ L(D), it suffices
to prove that δ̂E(q0, w) = δ̂D(Eclose(q0), w), for every word w ∈ Σ∗.
The proof is by induction on |w|.

1. Base case (|w| = 0): In this case, w = ε. We have δ̂E(q0, ε) = Eclose({q0}),
by definition of δ̂E in the ε-NFA.

22

� We therefore have

δ̂E(q0, ε) =︸︷︷︸
ε−NFA rule

Eclose({q0})

=︸︷︷︸
singleton set property

Eclose(q0)

=︸︷︷︸
Definition of qD

qD

=︸︷︷︸
D is a DFA

δ̂D(qD, ε)

=︸︷︷︸
Definition of qD

δ̂D(Eclose(q0), ε).

� So the base case holds.
2. Inductive case (|w| > 0):

� The induction hypothesis, for every x ∈ Σ∗ with |x| < |w|, we
have that δ̂E(q0, x) = δ̂D(Eclose(q0), x).

� Write w = xa, for some x ∈ Σ∗ and a ∈ Σ.
� The induction hypothesis applies to x.
� For notational convenience let S = δ̂E(q0, x) = δ̂D(Eclose(q0), x).

23

� Now we compute

δ̂E(q0, w) =︸︷︷︸
w=xa

δ̂E(q0, xa)

=︸︷︷︸
Definition of δ̂E

Eclose

 ⋃
p∈δ̂E(q0,x)

δE(p, a)

=︸︷︷︸

Definition of S

Eclose

(⋃
p∈S

δE(p, a)

)
=︸︷︷︸

Lemma 3.1.4

⋃
p∈S

Eclose(δE(p, a))

=︸︷︷︸
Definition of δD

δD(S, a)

=︸︷︷︸
Definition of S

δD(δ̂D(Eclose(q0), x), a)

=︸︷︷︸
Definition of δ̂D

δ̂D(Eclose(q0), xa)

=︸︷︷︸
w=xa

δ̂D(Eclose(q0), w), as required.

Remarks:
1. You should convince yourself that the base case handles the input word

ε correctly.
2. This argument did not use any special properties of q0.
3. We could re-run the argument with any state, q.
4. Thus we could have proved, for any state q and any word w ∈ Σ∗:

δ̂E(q, w) = δ̂D(Eclose(q), x).

4 Lecture 04

Outline
1. Regular Expressions - M3 1-5
2. Regular Languages - M3 6-12

24

4.1 Regular Expressions

Definition 4.1.1. Let Σ be an alphabet. We construct the regular expres-
sions over Σ (and describe the language which each regular expression
represents, i.e. the set of words that fit the mold defined by the regular ex-
pression) recursively, as follows.

Base
1. ∅ is a regular expression, and L(∅) = ∅.
2. ε is a regular expression, and L(ε) = {ε}.
3. If a ∈ Σ is any symbol, then a is a regular expression and L(a) = {a}.
Induction
1. If E and F are regular expressions, then E+F is a regular expression,

and L(E + F) = L(E) ∪ L(F).
2. If E and F are regular expressions, then EF is a regular expression,

and L(EF) = L(E)L(F).
3. If E is a regular expression, then E∗ is a regular expression, and

L(E∗) = (L(E))∗.
4. If E is a regular expression, then (E) is a regular expression, and

L((E)) = L(E).

Remarks:
1. For any word w ∈ Σ∗, the regular expression for L = {w} is just w

itself.
2. As in algebra, there is an order of operations here:

(a) Parentheses are used to override (or emphasize) the default order
as needed.

(b) ∗

(c) Concatenation
(d) +

Examples: Let Σ = {0, 1}.
1. Let L(0∗1∗) = { strings starting with some number of 0s and ending

with some number of 1s }.
2. Let L(01∗) = { strings starting with exactly one 0 and ending with

some number of 1s }.
3. Let L((01)∗) = { zero or more copies of 01 }.

Adding parentheses makes concatenation come before ∗ in 3, as opposed to
2. Hence the languages in 2 and 3 must be different.

25

4.2 Regular Languages

Definition 4.2.1. A language L is regular if it obeys the following recursive
definition:

Base
1. L = ∅ is regular.
2. L = {ε} is regular.
3. L = {a} for some alphabet letter a ∈ Σ is regular.
Induction
1. L = L1 ∪ L2, for regular languages L1, L2

2. L = L1L2 for regular languages L1, L2

3. L = L∗
1, for some regular language L1

No other languages are regular.

Remarks:
1. It might appear at first glance that the union part of the regular lan-

guage definition says that every language is regular (every language is a
possibly infinite union of 1-word languages, each of which is regular, by
Theorem 4.2.2, below). But infinite unions are not the same as finite
unions.

2. Non-regular languages exist e.g. {0i1i | i ≥ 0}. In L06 we will develop
a technique to establish the non-regularity of a language (Pumping
Lemma for Regular Languages).

3. Remember that ∅ ≠ {ε}!

Theorem 4.2.2. Every one-word language is regular.

Proof. See Lecture Slides.

Theorem 4.2.3. Every finite language is regular.

Proof. See Lecture Slides.

Remarks:
1. The converse of Theorem 4.2.3 is false! For example L(0∗) is regular,

and this is always infinite.
Examples: (trim down for class; refer to slides for the rest)

1. If Σ = {0, 1}, then Σ∗ = {0, 1}∗.
Regular expression: (0 + 1)∗

26

2. Even-length sequences:
Can be divided into 2-letter sub-words. (00 + 11 + 01 + 10)∗ or ((0 +
1)(0 + 1))∗

3. Sequences with length at most 3: ε + (0 + 1) + (0 + 1)(0 + 1) + (0 +
1)(0 + 1)(0 + 1) or
(0 + 1 + ε)(0 + 1 + ε)(0 + 1 + ε) or
ε+ 1 + 0 + 11 + 10 + 01 + 00 + 111 + · · ·

4. Sequences with at most two zeros:
1∗(0 + ε)1∗(0 + ε)1∗

5. And lots more.
Rules For Regular Languages - NOT Exhaustive (trim down for
class; refer to slides for the rest): Basic rules that you can often use
(not exciting, but true. . .):

1. Let E be a regular expression. Then ∅E = E∅ = ∅ (If w ∈ L(∅E), w =
xy where x ∈ L(∅) and y ∈ L(E). But nothing works for x.)

2. ∅∗ = {ε} (might be surprising). Recall, L0 = {ε}, for any L. Thus
∅0 = {ε}, ∅i = ∅, for every i ≥ 1, as above.

3. {ε}∗ = {ε}
4. x+ x = x (remember, + means union)
5. (x∗)∗ = x∗ (Taking closure twice, or by induction any finite number of

times, equals taking closure once)
� Side Note: an operation for which applying the operation twice
equals applying the operation once is called idempotent.

� Other natural examples of idempotents are projections in linear
algebra.

6. x(y + z) = xy + xz
Tons more of these, but we will not focus on them.
The first two might be surprising, and are thus important.

5 Lecture 05

Outline
1. Kleene’s Theorem - M3 13-39

27

5.1 Kleene’s Theorem

Kleene’s Theorem 5.1.1. Every regular language is the language of a DFA,
and every DFA accepts a regular language.

Remarks about Theorem 5.1.1, Before Its Proof:
1. Recall: We saw that DFAs are equally powerful to ε-NFAs.
2. Given any regular language, we will construct and ε-NFA which accepts

it.
3. We will prove that the language of any DFA is regular.
4. Together these constructions will establish the Theorem.

Forward To Prove: Let L be any regular language. I claim that there is an
ε-NFA M , such that L(M) = L. We will show an ε-NFA for the base cases
(easy), then prove the other three cases by structural induction on L (more
interesting).
Q & A

1. Why are all three base cases needed?
A:We are inducting on the structure of the regular language, L. There-
fore every base case and every inductive case from the construction of
L must be included in our proof.

Base Cases:
∅ {ε} {a}

a

Inductive Cases:

28

M1

q0

M1

M2

M2

M1

Kleene Star

Union

Concatenation

ε

ε

ε

ε
ε

Here is an argument that this works, for the Kleene ∗ operator, where L =
(L1)

∗. By results from Module 2, let M1 be an ε-NFA which accepts L1.
Proof that L(M) ⊆ L:

� Let x ∈ L(M) be arbitrary.
� Then there is a path in M for x ending in the start state.
� This path can then be broken down into 0 or more sub-paths, each of
which begins and ends in the initial state.

� Break the full path into its individual loops.
� Each constitutes a path, in M1, from the initial state to some accept
state.

� In other words, each loop is taken by some x1 ∈ L(M1).
� Write x = x1 · · ·xk, for some k ≥ 0.
� Therefore x is a concatenation of zero or more words in L1, in other
words x ∈ L∗

1. (Note that x can be ε.)
� This shows that L(M) ⊆ (L1)

∗ = L.
Proof that L ⊆ L(M):

� Let x ∈ L = L∗
1 be arbitrary.

� Write x = x1x2x3 · · ·xk, with all xi ∈ L1.
� So there is a path from start state in the new machine to an accept
state for each of the xi.

� Join the paths together, following each with the ε-transition back to
the start state to get a path for x from the start state back to itself.

� The start state is an accept state, so our new machine accepts x.

29

� So x ∈ L(M).
� This shows that L ⊆ L(M).

Now we are done.
� We have shown that L(M) ⊆ L and L ⊆ L(M).
� Therefore we have L(M) = L, as claimed.

The other inductive cases are similar and are left as exercises.
Backward To Prove: For every DFA, its language is regular.
One idea: Given a DFA D, we must find a regular expression for its lan-
guage. Paths through a state can be replaced by the regular expression that
represents going from the previous state to the next one. This leads us to
the idea of state removal. See the Lecture Slides for details. However we
will not write our proof this way here.
Recall:

� Let D = {Σ, Q, q0, F, δ} be an arbitrary DFA.
� Then L(D) = {x ∈ Σ∗ | δ̂(q0, x) ∈ F} =

⋃
r∈F{x ∈ Σ∗ | δ̂(q0, x) = r}.

� Idea: Characterize all input strings that take us from state q to state
r: Define L(q, r) = {x ∈ Σ∗ | δ̂(q, x) = r}, for any q, r ∈ Q.

� With this notation, L(D) =
⋃

r∈F L(q0, r) (i.e. the set of words that
take us from q0 to any accept state r ∈ F)

� This is a finite union, so if all L(q0, r) are regular, then so is L(D).
(Prove this, by induction on |F |!)

� Although the union is finite, some (all) of the sets involved can be
infinite.

What we now want:

Theorem 5.1.2. Let D = (Σ, Q, q0, F, δ) be an arbitrary DFA. Let q, r ∈ Q
be arbitrary. Define L(q, r) = {x ∈ Σ∗ | δ̂(q, x) = r}. Then L(q, r) is regular.

Remarks on the Proof:
� We will prove this using structural induction, after giving an appropri-
ate setup.

� Think about the list of the states visited while we process some x ∈
L(q, r).

� Restrict the number of states that can come between q and r, and grow
this set of states.

� Number the states of the DFA D : 1, . . . , n.
� For 0 ≤ k ≤ n, define L(q, r, k) = { all words in L(q, r) where all
intermediate states between q and r are from 0, . . . , k}.
(Remember, M is a DFA, so each word has only one state path.)

30

� The k = 0 case says that no intermediate states can exist, i.e. q and r
are equal, or there is a single transition from q to r.

Remarks on the languages L(q, r, k)
� Reducing k shrinks the set; increasing k grows the set.
� If the path from q to r for word x uses state k, then x is not in L(q, r, k−
1).

� We induct on 0 ≤ k ≤ n.
� This will give us what we want: L(q, r, n) = L(q, r).
� (Different labellings of states will produce different L(q, r, k) sets, but
the proof will work regardless.)

� Formally: For 0 ≤ k ≤ n, L(q, r, k) = {x ∈ Σ∗ | δ̂(q, x) = r and
δ̂(q, w) ≤ k for all non-empty proper prefixes of w of x (i.e. where
w ̸= ε and w ̸= x)}.

� (Terminology: w is a proper prefix of x if w is a prefix of x and not
equal to x.)

� New Goal: Prove L(q, r, n) is regular, for all q, r.
� It is enough show that L(q, r, k) is regular for all 0 ≤ k ≤ n.
� The proof is by induction on k.

Proof. Base case: k = 0:
� If x ∈ L(q, r, 0), then δ̂(q, w) ≤ 0 for all proper prefixes w of x.
� But that means there are no proper prefixes w of x.
� Therefore, |x| = 0 or 1.
� So all words in L(q, r, 0) are of length 0 or 1.
� As Σ is finite, this implies L(q, r, 0) is finite, and thus regular by The-
orem 4.2.3.

Induction step: k > 0:
� Inductive hypothesis: L(q, r, k − 1) is regular for all q and r.
� We must show that L(q, r, k) is regular.

– Let x ∈ L(q, r, k) be arbitrary.
– If the path from q to r for x never touches the state k, then

x ∈ L(q, r, k − 1).

31

q r

k

1 . . . k − 1

� Otherwise: x ∈ L(q, r, k) and x /∈ L(q, r, k − 1), i.e. k is on the path
from q to r for x, one or more times.

� Then there is a first and a last time we are in state k. Between the first
and last time, all states are ≤ k, regardless of whether q > k or r > k
(by the definition of x ∈ L(q, r, k)).

q r

k

1 . . . k − 1

So we can divide x into:
1. The part from q to k the first time,
2. The “middle part”, from k back to itself 0 or more times:

(a) The first loop (if any) from k to k,
(b) The next loop from k to k,
(c) . . .
(d) The last loop from k to k,

3. and the part from k to r.
Words divided in this way are exactly the words in L(q, r, k) that include
state k on their state path. This set of words is L(q, k, k − 1)(L(k, k, k −
1))∗L(k, r, k − 1).
So the language L(q, r, k) is the union of two languages:

1. L(q, r, k − 1), which we know is regular by the induction hypothesis,
and

32

2. L(q, k, k − 1)︸ ︷︷ ︸
1

(L(k, k, k − 1))∗︸ ︷︷ ︸
2

L(k, r, k − 1)︸ ︷︷ ︸
3

, which is the concatenation

of three languages (each of which is regular by the induction hypothesis
and the definition of regular languages), and thus is also regular.

Hence L(q, r, k) is regular. We are done, but that may not be obvious yet.
� We proved that L(q, r, k) is regular for all k.
� We noted that L(q, r) = L(q, r, n), so L(q, r) is always regular for any
q, r ∈ Q.

� Therefore L(q0, r) is regular for any r ∈ F .
� Thus

⋃
r∈F L(q0, r) is regular (as it is the union of a finite number of

regular languages).
� But L(D) =

⋃
r∈F L(q0, r) is therefore regular.

So L(D) is regular! (Again, how long is the expression for L(q0, r)?)
This is the end of the proof of Kleene’s Theorem:

� Given a DFA, we have shown that its language is regular.
� Given a regular language, we can produce an ε-NFA which recognizes
it.

� NFAs and ε-NFAs have the same computing power as DFAs.
Next module: the boundaries of regular languages, and closure rules for

them.

6 Lecture 06

Outline
1. Pumping Lemma for Regular Languages - M4 1-20

6.1 Pumping Lemma for Regular Languages

Goal: Develop a rigourous way of proving that some language, L, is not
regular.
Non-regular languages By Kleene’s Theorem, a language L is regular if
and only if there exists a DFA, M , such that L = L(M). How does a DFA
M work?

� Suppose M has n states, for some n > 0.
� Consider a word x ∈ L(M) with |x| ≥ n.

33

� On its path from q0 to an accept state, xmust repeat a state somewhere
along the path.

� Reason: There are only n states in total, and the machine starts out
in one of them (namely q0), then reads ≥ n input characters. (Recall
the pigeonhole principle.)

� Let’s say that we repeat state r.
� Then the word x can be decomposed: x = uvw, where:

– u = the part from q0 to the first time we reach r (i.e. after pro-
cessing u, we are in state r).

– v = the first loop from r to itself (i.e. after processing v, we are
again in state r).

– w = The part from the second time we reach r that leads us to
an accept state.

– Note: it is possible that either u or w is ε, but v cannot be ε.
– We are in a DFA, without ε-transitions, hence we must consume

at least one input symbol to loop from r back to itself.
– All we had to assume to obtain this decomposition was that |x| ≥

n, where n = # of states in our DFA.
� This decomposition is possible for any word x ∈ L(M) with |x| ≥ n.
� Fact: uvvw is also in L(M). Why?

– vv also loops from r back to itself:

δ̂(r, vv) =︸︷︷︸
A01

δ̂(δ̂(r, v), v) = δ̂(r, v) = r.

� Another Fact: uw = uv0w ∈ L(M).
� By induction, uviw ∈ L(M), for all i ∈ N.
� If we choose the first time a state is repeated, then |uv| ≤ n.

– Reason: The machine has n states, so we must have the first
repeated state by the nth step.)

� We can “pump out” many copies of v, for example uvvvvvvvvvvvw is
also part of L(M).

Pumping Lemma For Regular Languages 6.1.1. For every regular lan-
guage L, there exists some positive integer n such that all words x ∈ L with
|x| ≥ n can be decomposed as x = uvw, where:

� |uv| ≤ n,
� v ̸= ε , and
� uviw ∈ L for all i ≥ 1.

34

Proof. Already done!

Remarks:
1. Think of n as being the number of states in some (smallest) DFA, M ,

accepting L.
2. Lemma 6.1.1 describes one feature of all long words in a regular lan-

guage:
(a) For some definition of “long”, all long words can be pumped.
(b) Note that, if L is finite (and therefore regular), then taking any

n > maxx∈L{|x|} works (because with such an n, L contains no
long words).

This provides us with the following Technique for Proving that a Lan-
guage Cannot Be Regular
Let L be a language. Suppose that for any positive integer, n:

1. There exists a word x ∈ L with |x| ≥ n such that
2. for any decomposition of x into x = uvw, with |uv| ≤ n and v ̸= ε,
3. uv∗w ̸⊆ L.

Then L is not a regular language.
The Same Technique, Explained in English
“Suppose that for any value of n > 0,

1. there exists a word x ∈ L with |x| ≥ n”... (If there is always a long
word in L)

2. “such that for any decomposition of x into x = uvw, with |uv| ≤ n and
v ̸= ε” ... (that cannot be decomposed into three parts where the first 2
parts are not long and the middle part is non-trivial)

3. “uv∗w ̸⊆ L.”... (and the second part cannot be pumped,)
Then L is not a regular language.
Examples of Proving Languages Are Non-Regular

Theorem 6.1.2. L = {0i1i|i ≥ 0} = {ε, 01, 0011, 000111, 00001111, . . .} is
not a regular language.

Proof. � Let n > 0 be arbitrary.
� Choose a word x ∈ L, with |x| ≥ n. (N.B. there is no recipe for
choosing this x.)

� I will choose x = 0n1n. This is our long word.
� Now, consider all possible decompositions x = uvw, where |uv| ≤ n,
and v ̸= ε.

35

� Fact: for all such decompositions, uv = 0k for some 0 < k ≤ n, because
the first n characters of x = uvw are all 0 (by the definition of x).

� Now, we must argue that uv∗w ̸⊂ L is not a subset of L. In particular,
we must exhibit some i ≥ 0 such that uviw ̸∈ L. (often, i = 0 or i = 2
will work.)

� Let i = 0. Recall that v is all 0’s. Then uv0w will have fewer 0’s than
1’s. So uv0w ̸∈ L.

� And hence the language L is not regular.

Again, how did that work?
Pumping lemma: to prove languages are not regular.

� For any definition of long, find a long word in the language:
Long: length ≥ n. Our long word was x = 0n1n.

� Consider all breakdowns of x into x = uvw, where uv is short and
v ̸= ε.
For the long word x, if x = uvw, and uv is short, then uv is all 0’s.

� If for all of these breakdowns x = uvw, we cannot pump v, then L is
not regular.
No matter what v is, it must be all 0’s. So if we pump v, then uvvw
or uw both have the wrong number of 0’s. So L is not regular.

� We can also prove L is not regular by thinking of possible DFAs for L
and showing that they cannot exist.

� This is hard in general. The Pumping Lemma is better.
Another example

Theorem 6.1.3. The language L = {0p|p is a prime } is not regular.

Why can we not pump the primes?

Proof. � (This language includes 00, 000, 00000, 0000000, 00000000000, . . .)
� Proof by Pumping Lemma. (Assume that there are infinitely many
primes. There are many nice proofs of this fact.)

– Choose a value of n > 0.
– Choose x = 0p, for a prime p ≥ n.
– Then x is a long word in L.
– Now we must argue that no decomposition of x can be pumped.

Consider all decompositions x = uvw, where |uv| ≤ n and v ̸= ε.
– Then v = 0k for some 1 ≤ k ≤ n.

36

– And uv∗w = {0p−k, 0p, 0p+k, 0p+2k, . . .}.
– Is it possible that all of these are in L?
– No. One member of uv∗w is 0p+(pk); it is the (p+ 2)th member in

the above list.
– This word is not a member of L, since p+pk = (1+k)p is composite

(both factors are non-trivial, as k ≥ 1).
� For any n, we can find a long word, such that all decompositions of it
cannot be pumped. Therefore L is not regular.

Another example: palindromes

Theorem 6.1.4. L = {s | s = sR}, the language of palindromes, is not
regular.

Remarks:
1. Examples of palindromes: 0110, 01110, ε, 1111, etc.

Proof. Proof by Pumping Lemma.
� Given a value of n > 0, find a word in L of length at least n.
� How about x = 0n10n?
� Now, consider all decompositions of this into x = uvw, where uv is
short and v is not ε.

� Again, v must be 0i for some 1 ≤ i ≤ n.
� And the number of 0’s before the only 1 in uv2w is more than the
number after it, so it cannot be a palindrome.

� So we cannot pump x, regardless of our choice of decomposition.
� So L is not regular.

One more example

Theorem 6.1.5. Let L = {y!z | |y| > |z|, y, z ∈ {0, 1}∗}, over Σ = {0, 1, !}.
Then L is not regular.

Remarks:
1. This language includes words like 111!00, 1!, 10001!111.

Proof. Proof by Pumping Lemma.
� Consider a value n > 0.
� The string x = 0n!0n−1 is long, and in L.

37

� We will show that uv0w is not in the language.
– Decompose x = uvw with uv of length at most n and nonempty

v.
– For all such decompositions, v = 0k for some k ≥ 1.
– And uv0w = 0n−k!0n−1.
– This is not a word in L: the part before the ! character is too

short.
– So v is not pumpable, no matter how we do it.

� L is not regular.

What can go wrong?
It is easy to misuse the Pumping Lemma.

� The existence of one bad (i.e. non-pumpable) decomposition of x does
not matter.

� We must show that all decompositions of x = uvw with |uv| ≤ n and
v ̸= ε cannot be pumped.

Example:
� Obviously, L = (01)∗ is regular.
� For any value of n ≥ 2, (01)n is a long word in L.
� Decompose into u = 0, v = 1, w = (01)n−1.
� Then |uv| ≤ n and v ̸= ε.
� Also uv2w = 011(01)n−1 /∈ L.
� So we conclude that L is not regular (?!?!?)

Clearly we have done something wrong! What is it?
� Problem: We must show that no decomposition can be pumped. One
bad (non-pumpable) decomposition is not enough.

� The decomposition u = ε, v = 01, w = (01)n−1 is pumpable.
More Pumping Lemma: pitfalls

� The Pumping Lemma:
– Long words in regular languages can be pumped.

� Its contrapositive:
– If a language has long words that cannot be pumped, it is not

regular.
� Note: the theorem does not give a definition of regular languages. The
following is not true:

– If all long words in a language can be pumped, it is regular.
� In fact, some non-regular languages can be pumped.

38

7 Lecture 07

Outline
1. Closure Rules for Regular Languages - M4 21-28
2. Decision Problems for Regular Languages - M4 29-36

7.1 Closure Rules for Regular Languages

Definition 7.1.1. 1. A class of languages is closed under a binary op-
eration if applying that operation to two languages in the class always
yields a language in the class.

2. A class of languages is closed under a unary operation if applying that
operation to one language in the class always yields a language in the
class.

Theorem 7.1.2. Regular languages are closed under ∗, finite union and
finite concatenation.

Proof. Obvious, by Definition 4.2.1 plus induction.

Remarks:
1. Subsets of regular languages are not necessarily regular: If Σ =

{0, 1}, then (0 + 1)∗ = Σ∗ is regular, so any language over Σ = {0, 1}
is the subset of a regular language!

2. {0i1i | i ≥ 0} ⊆ (0 + 1)∗ but is not regular.
3. Moral: The class of regular languages is NOT closed under subset.

Theorem 7.1.3. If language L is regular, then so is its complement, L′.

Proof. We will apply Kleene’s Theorem 5.1.1. Given a regular L, we will
construct a DFA accepting the complement L′.

� Since L is regular, by Kleene’s Theorem, L is the language of some
DFA, M , with state set Q and accept states F ⊆ Q.

� Construct a new DFA, M ′ from M , by swapping the accept and reject
states in M , in the specification of M ′.

� Then M ′, with accept set Q \ F accepts all words which the old DFA,
M , rejected and rejects all words which M accepted.

� Because M is a DFA, therefore so is M ′.
� By construction, M ′ accepts L′.
� By Kleene’s Theorem 5.1.1, L′ is regular.

39

Remarks:
1. This is much easier than constructing a regular expression for L′ from

a regular expression for L.
2. The Theorem says that regular languages are closed under comple-

ments.

Theorem 7.1.4. If L1 and L2 are regular languages, then so is L1 ∩ L2.

Remarks:
1. In other words, regular languages are closed under intersection.
2. This can be proved in lots of correct ways.
3. One nice way: L1 ∩ L2 = (L′

1 ∪ L′
2)

′. (Draw a suitable Venn diagram
to see the equality.)

4. L′
1 is regular (by Theorem 7.1.3); so is L′

2.
5. By Definition 4.2.1, L′

1 ∪ L′
2 is regular.

6. And again, by our Theorem 7.1.3, (L′
1 ∪ L′

2)
′ = L1 ∩ L2 is regular.

Proof. Strategy: by building a DFA By Kleene’s Theorem, let M1 and
M2 be DFAs accepting L1 and L2 respectively. We must construct a new
DFA, M , such that L(M) = L1 ∩ L2. Idea: M simulates processing each
alphabet symbol, a ∈ Σ, through M1 and M2 in parallel. M accepts exactly
when bothM1 andM2 accept simultaneously. DefineM using the ingredients

� Σ is the same as for M1,M2.
� Q = {(q1, q2) | q1 ∈ Q1, q2 ∈ Q2}
� F = {(f1, f2) | f1 ∈ F1, f2 ∈ F2}
� q0 = (q10 , q20)
� δ : δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a))
� By construction, M is a DFA, which accepts L1 ∩ L2.
� By Kleene’s Theorem, L(M) = L1 ∩ L2 is regular.

q

r

M1

M2

a

a

M(q, r) a

(q�, r�)

q�

r�

40

Closure under reversal Recall: wR is the reversal of the word w.
Given a language L, let LR be the language that consists of all of the words
of L, reversed.

Theorem 7.1.5. If L is regular, then so is LR.

Proof idea (we won’t make it rigourous): Let M be a finite automaton
whose language is L. Make a new finite automaton R with the same states
as M , plus a new start state:

� All of the edges of R are the reversals of the edges of M .
� The sole accept state of R is the start state of M .
� The start state of R has an ε-transition to each accept state of M .

Then R reverses the automaton M : if we start at an accept state of M and
work our way back to the start state of M (i.e. if M accepted x), then the
new machine R accepts the word xR, and vice versa.
Closure under reversal Suppose we have the following DFA, M

q1
0 //

1

��

q2

0,1

WW

// q0

1
;;

0 ##
q3

0,1

��

q4

0,1

��

to accept the language

L = {w | w begins with 0 or with 10}.

Closure under reversal The construction yields this ε-NFA, R

q1
1

{{

q2
0oo

0,1

WW

q0 q5

ε

��

ε

OO

oo

q3

0,1

��0

cc

q4

0,1

��

1

ZZ

41

to accept the language

L = {w | w ends with 0 or with 01}.
Note that, although this ε-NFA R can be simplified, the construction is still
correct.

Proof. We can prove this theorem by structural induction on the construction
of the regular language L.

� Base cases: If L = ∅, {ε} or {a} ,then LR = L is regular.
� Induction cases:

– If L = L1∪L2 for regular languages L1 and L2, then LR = LR
1 ∪LR

2 ,
and both of LR

1 and LR
2 are regular by induction.

– If L = L1L2 for regular languages L1 and L2, then LR = LR
2 L

R
1 ,

and this is the concatenation of the regular languages LR
2 and LR

1

(by induction), and hence is regular.
– If L = L∗

1, then
* We want to prove that LR = (L∗

1)
R is regular.

* The induction hypothesis is that LR
1 is regular.

* Therefore by the definition of regular languages, it follows
that (LR

1)
∗ is regular.

* I claim that (L∗
1)

R = (LR
1)

∗. Proving the claim will complete
this case.

* For an arbitrary word w, we have

w ∈ (L∗
1)

R

⇔ w = (w1 · · ·wn)
R, for some wis ∈ L1

⇔ w = wR
n · · ·wR

1 , for some wis ∈ L1

⇔ w ∈ (LR
1)

∗, which establishes the claim.

Remarks:
1. Moral: The class of regular languages is closed under reversals.
2. Summary: The class of regular languages is closed under:

(a) finite concatenations, finite unions, ∗-closure
(b) complements
(c) complements
(d) intersections
The class of regular languages is NOT closed under taking subsets.

42

7.2 Decision Problems for Regular Languages

Recall that a decision problem is a question that requires a yes/no answer,
given some input, e.g.

1. Given an arbitrary propositional formula, is it satisfiable? (decidable).
2. Given an arbitrary program P and an arbitrary input I for P, does P

halt when processing I? (undecidable). This ia the Halting Problem.
We will revisit the Halting Problem during the third chunk of CS 360,
using the computation model of Turing machines.

Algorithmic questions about finite automata We do not often create
algorithms in this class (apart from constructing automata, which model
computations). Here is one exception:
Is it possible to find algorithms for the following:

1. Given a DFA M and a word x, does M accept x?
2. Given a DFA M , is L(M) = ∅?
3. Given a DFA M , is L(M) infinite?
4. Given two DFAs M1 and M2, is L(M1) ∩ L(M2) empty?
5. Given two DFAs M1 and M2, is L(M1) ⊆ L(M2)?
6. Given two DFAs M1 and M2, is L(M1) = L(M2)?
7. Given two regular expressions e1 and e2, do they generate the same

language?
1. Given a DFA M and a word x, does M accept x?

� Just simulate the DFA.
� M is a DFA, and the input x is of finite length, so M terminates
after finitely many steps of processing x.

� When M terminates, we determine whether M accepts x, by
checking whether the terminating state is final or not.

� This works because M is a DFA; If M is a Turing machine, then it
might never terminate when processing x (Halting problem again).

2. Given a DFA M , is L(M) = ∅?
More fun.

Lemma 7.2.1. If a DFA, M , having n states accepts any words, then it
must accept a word with < n letters.

Remark: The Lemma provides a finite set which we can examine to obtain
our answer. Without the Lemma, we would need to check every member of
the infinite set Σ∗.

Proof. � Assume L(M) ̸= ∅.

43

� By Kleene’s Theorem, L(M) is regular.
� Let x0 ∈ L(M) be arbitrary.
� If |x0| < n, then we are finished.
� Otherwise, |x0| ≥ n and by the proof of the Pumping Lemma, we can
decompose x0 = u0v0w0, with u0w0 ∈ L(M) and |v0| ≥ 1.

� We have produced a new word u0w0 ∈ L(M), with |u0w0| < |u0v0w0|.
� If |u0w0| < n, then we are finished.
� Otherwise, |u0w0| ≥ n and u0w0 ∈ L(M) and so by the proof of the
Pumping Lemma, we can decompose u0w0 = u1v1w1, with u1w1 ∈
L(M) and |v1| ≥ 1.

� Continuing in this way we obtain a sequence of words in L(M) having
strictly decreasing lengths: x0, u0w0, u1w1, . . . , ujwj,

� As x0 has finite length, after at most |x0| − n+ 1 steps, we will obtain
a word in L(M) with length < n. □

Now, back to the decision problem.
� Given a DFA M , is L(M) = ∅?

– Try every word of length less than n (finitely many since our
alphabet is finite).

– If any word is accepted, then L(M) ̸= ∅. Otherwise L(M) = ∅.
– If no short word is accepted, then by Lemma 7.2.1, L(M) = ∅.

Next decision problem:
� Given a DFA M , is L(M) infinite?

Theorem 7.2.2. If M is a DFA with n states, then L(M) is infinite if and
only if L(M) includes a word x satisfying n ≤ |x| < 2n.

Proof. � Suppose x ∈ L(M) and n ≤ |x| < 2n.
� From the Pumping Lemma, x must be pumpable.
� The word x = uvw can be used to generate the infinite language uv∗w,
which is a subset of L(M).

� So L(M) is infinite.

Other direction: Assume that L(M) is infinite.
� For a contradiction, suppose that there does not exist any x ∈ L(M)
satisfying n ≤ |x| < 2n.

� In other words, every word x ∈ L(M) with length at least n must have
length at least 2n.

44

� Let x ∈ L(M) be a shortest word with length at least n (so that
|x| ≥ 2n by the above point).

� (If there is no x ∈ L(M) with length at least n, then L(M) is finite,
which cannot happen.)

� Decompose x = uvw, where v ̸= ε and |uv| ≤ n, so that 1 ≤ |v| ≤ n.
� By the Pumping Lemma, uw is also in L(M).
� We have only removed at most n letters by removing v, so |uw| ≥ n,
and by construction, |uw| < |x|.

� Thus uw violates the choice of x as a shortest word in L(M) with length
at least n.

� This contradiction completes the proof.

� If L(M) is infinite, we must have a word in L(M) with length between
n and 2n.

� To see if L(M) is infinite, check all words between n and 2n in length.
� This runs in a finite amount of time.

Disjoint languages, subset
� Given two DFAs M1 and M2, is L(M1) ∩ L(M2) empty?

– First, construct a DFA for L(M1) ∩ L(M2).
– Then use the algorithm for testing for an empty language of an

FA to see if it accepts the empty language.
� Given two DFAs M1 and M2, is L(M1) ⊆ L(M2)?

– If so, then L(M2)
′ ∩ L(M1) is empty.

(There is nothing in L(M1) that is not in L(M2).)
– Build the DFA for L(M2)

′.
– Use it to build the DFA for L(M2)

′ ∩ L(M1).
– Use the algorithm from before to test if its language is empty!

Two FAs with the same language
� Given two DFAs M1 and M2, is L(M1) = L(M2)?

– Yes, if L(M1) ⊆ L(M2) and L(M2) ⊆ L(M1) .
– Use the algorithm for testing for subset twice.

� Given two regular expressions e1 and e2, do they represent the same
language?

– Construct the DFAs for each regular expression, using Kleene’s
Theorem.

– Then use the algorithm for testing if two FAs have the same lan-
guage.

45

(If you like this kind of stuff, take CS 462.)

8 Lecture 08

Outline
1. Context-Free Grammars and Languages - M5 1-25

8.1 Context-Free Grammars and Languages

Definition 8.1.1. a context-free grammar (CFG) is a 4-tuple: G =
(V, T, P, S), where

1. V is a finite set of variables, usually denoted by capital letters.
2. T is a finite alphabet, called terminals. T ∩ V = ∅.

T is the alphabet for the CFG’s language.
3. P is a finite set of productions, which are definitions for the variables.

Each production in P is of the form A → α, where
� A is a variable, and
� α is a string of symbols from V and T . (Therefore α ∈ (V ∪T)∗),
OR α may equal ε.

� Shorthand Notation: If we have productions A → α and A →
β, shorthand this as A → α | β.

4. S = Start variable: the symbol from V where the derivation of a
word begins.

An Example, which generates L(0∗1∗) (Exercise: prove it!)
G = (V, T, P, S), where

� V = {A,B, S}
� T = {0, 1}
� P = {S → AB,A → 0A | ε, B → B1 | ε}
� S = S

Goal: Define what it means for a word to be in the language of a CFG.

Definition 8.1.2. We write α ⇒
G

β if β can be produced from α via a single

derivation in G.

E.g., with the above G, 00AB1 ⇒
G

00AB11.

Definition 8.1.3. � Suppose that there is a sequence of strings γ1, γ2, . . . , γk
for some k ≥ 1 such that:

46

1. α = γ1,
2. β = γk,
3. For all 2 ≤ i ≤ k, γi−1 ⇒

G
γi.

� Then write α
∗⇒
G

β.

Example: Using the above G,

S ⇒ AB ⇒ 0AB ⇒ 00AB ⇒ 00εB ⇒ 00B1 ⇒ 00ε1.

This derivation says that S
∗⇒
G

001.

Remarks on the Example:
1. We know the derivation is finished when the string contains only ter-

minals, no variables.
2. This derivation uses the leftmost rule (the leftmost variable must be

resolved first before moving on to other variables).
3. Our convention will be to use leftmost derivations.

Language of a grammar

Definition (Language of a CFG) 8.1.4. Given a context-free grammar
G = (V, T, P, S), its language is:

L(G) =
{
w ∈ T ∗ | S ∗⇒

G
w
}
.

In English, L(G) is the set of words that we can derive from the start variable
S, with no variables from V remaining.
A language, L, is context free if L = L(G), for some CFG, G.

A Bit More About the Leftmost Rule: Let G : S → AB,A → 0A |
ε, B → 01. Then we have

S ⇒ AB ⇒ εB ⇒ ε01, so S
∗⇒
G

01

We cannot produce 01 using the other rule for A first. The leftmost rule
forces us to resolve A, somehow, before we resolve B. Note that the leftmost
rule does not dictate which production for A we choose.
Why do we call these languages “context-free”?

� It does not matter where (i.e. in what context) a variable occurs.
� Suppose P includes: A → ab.

47

� Given any string x1Ax2, we can change the A into ab.
� That is, we can do this substitution regardless of the context of A,
which is what x1 and x2 are.

� Think about mad-libs from when you were a kid; they were funny
because you were making sentences that were silly. They did not have
context.

� Proper English (or indeed, any human language) has context.
An example G = (V, T, P, S), where

� V = {S},
� T = {0, 1},
� P = {S → 0S1 | S1 | ε}, and
� S = S.

Remark: We do not need to specify V , T or S when they are obvious, given
P .

� G : S → 0S1 | S1 | ε is enough here.
The language of this CFG Let L = {0i1j, where 0 ≤ i ≤ j}

� Proof sketch, using the Pumping Lemma that L is not regular:
– Let n > 0 be arbitrary.
– Let x = 0n1n ∈ L be our long word.
– Write x = uvw, where |uv| ≤ n and v ̸= ε.
– Then v = 0k for some 1 ≤ k ≤ n, so uv2w /∈ L.

Q & A
1. Given some CFL of interest, possibly described in set theory notation,

e.g. {0i1i | i ≥ 0}, how does one produce a CFG, G, such that L(G) =
G?
A: There is no algorithm for choosing such a G. Human intuition is
required to do this. We develop our intuition by working with CFGs
and their languages. One additional complication - such a G need not
be unique!

Theorem 8.1.5. Let G : S → 0S1 | S1 | ε. Let L = {0i1j, where i ≤ j}.
Then L(G) = L.

Proof. To prove the Theorem, we must show L ⊆ L(G) and L(G) ⊆ L.
Proof that L ⊆ L(G): Let x ∈ L be arbitrary. We will prove, by induction
on |x|, that x ∈ L(G).

� Base case: |x| = 0. Then x = ε, and S → ε is a rule in the grammar

G. Therefore we have S
∗⇒ ε, so ε ∈ L(G). So the base case holds.

48

� Inductive case: Let |x| > 0, so that x ̸= ε. Write x = 0i1j, for some
i ≤ j.

– The induction hypothesis is that, for any w ∈ L, with |w| <

|x|, w ∈ L(G) (i.e. S
∗⇒
G

w).

– We have these two cases for i:
1. i = 0, so x = 1j = 1j−11 (j ≥ 1 as we are not in the base

case).
* Then 1j−1 ∈ L by the definition of L.
* The induction hypothesis applies to 1j−1.
* Thus S

∗⇒ 1j−1.
* Derive x in G via

S ⇒ S1
∗⇒ (1j−1)1 = 1j = x.

* This shows that x ∈ L(G) in this case.
2. i > 0, so that x = 0i1j, with 0 < i ≤ j.

* Then 0i−11j−1 ∈ L (i ≤ j implies i− 1 ≤ j − 1).
* The induction hypothesis applies to 0i−11j−1.
* So S

∗⇒ 0i−11j−1.
* Derive x in G via

S ⇒ 0S1
∗⇒ 0(0i−11j−1)1 = 0i1j = x.

* This shows that x ∈ L(G) in this case.
In either case, x ∈ L(G). This finishes the proof that L ⊆ L(G).

Proof that L(G) ⊆ L: Let x ∈ L(G) be arbitrary. The proof is by induction

on k, the number of steps in the derivation of x (S
k⇒ x).

� Base case (k = 1; k = 0 is not possible: V ∩ T = ∅): The only 1-step
derivation in G that produces a word is S → ε. Therefore x = ε.
Because ε = 0010, therefore x ∈ L. So the base case holds.

� Inductive case (k > 1): I.H.: every word w ∈ L(G) derived in < k
steps is in L.

– As we are not in the base case, the first step in the derivation of
x must be S → 0S1 or S → S1.

– If the first step is S → 0S1,

* Write x = 0w1 where S
∗⇒ w in < k steps.

* By the induction hypothesis, w ∈ L.
* Write w = 0i1j, for some i ≤ j.

49

* Then x = 0w1 = 0(0i1j)1 = 0i+11j+1 ∈ L.
– If the first step is S → S1,

* Write x = w1 where S
∗⇒ w in < k steps.

* By the induction hypothesis, w ∈ L.
* Write w = 0i1j, for some i ≤ j (i ≤ j implies i ≤ j + 1).
* Then x = w1 = (0i1j)1 = 0i1j+1 ∈ L.

� In either case, x ∈ L.
� This finishes the proof that L(G) ⊆ L.
Put them together: L(G) ⊆ L and L ⊆ L(G). So L = L(G) as claimed.

This take a bit of care to set up, but theorems like this one are not hard to
prove.
Remarks:

1. We described our L in two different ways:
(a) set-theoretic
(b) as the language of some CFG, G.
Then we rigourously proved that the descriptions are interchangeable,
i.e. that the two languages are equal.

Another Example of a CFL

Theorem 8.1.6. Let L = {w ∈ {0, 1}∗ | n0(w) = n1(w)}.
� L consists of all binary strings with as many 0s as 1s.

Then L is context free.

Proof. We will show that L is the language of the grammar: G = (V, T, P, S),
where

� V = {S},
� T = {0, 1},
� P = {S → ε | 0S1 | 1S0 | SS}, and
� S = S.

To prove this, we must show that the languages are subsets of each other, in
both directions.
Proof that L(G) ⊆ L:

� Let w ∈ L(G) be arbitrary, i.e. assume S
n⇒ w, for some n.

� The proof is by induction on n.
� Base case (n = 1): Then w = ε (the only one-step derivation in G is
S → ε). Note that ε ∈ L, so the base case holds.

50

� Inductive case (n ≥ 2): The induction hypothesis is that for every
x ∈ L(G) which is derived in fewer than n steps, we have x ∈ L.

Inductive step in one direction Consider the first step in a derivation of
w. We have these cases (which are exhaustive, as we are no longer in the
base case):

� S → 0S1: Write w = 0x1, where S
n−1⇒ x. The induction hypothesis

applies to x, so n0(x) = n1(x). Hence, by construction, n0(w) = n1(w)
too. Thus w ∈ L.

� S → 1S0: Write w = 1x0, where S
n−1⇒ x. The induction hypothesis

applies to x, so n0(x) = n1(x). Hence, by construction, n0(w) = n1(w)
too. Thus w ∈ L.

� S → SS: Write w = xy, where S
∗⇒ x and S

∗⇒ y. The induction
hypothesis applies to x, so n0(x) = n1(x). The induction hypothesis
also applies to y, so n0(y) = n1(y). Hence, by construction, n0(w) =
n1(w) too. Thus w ∈ L.

We have shown that in all cases, if w ∈ L(G) then w ∈ L. Thus the contain-
ment L(G) ⊆ L is established.
Proof that L ⊆ L(G): Let w ∈ L be arbitrary. We must show that
w ∈ L(G). The proof is by induction on |w|.

� Base case (|w| = 0): Then w = ε. Then w ∈ L(G) via the production
S → ε in G.

� Inductive case (|w| ≥ 1): The induction hypothesis is that for all words
x ∈ L with |x| < |w|, we have x ∈ L(G).

� Note that all words in L have even length, since they have equal num-
bers of 0s and 1s.

� We will have four cases, depending on the two outside letters of w.
Four cases of the induction proof

1. w = 0x1.
� Since w ∈ L, therefore n0(w) = n1(w) by the definition of L.
� But then n0(x) = n1(x) by construction, and so x ∈ L.
� Also by construction, |x| < |w|.
� Thus by the induction hypothesis, x ∈ L(G), i.e. S

∗⇒ x.
� Then we can derive w in G via

S ⇒ 0S1
∗⇒ 0x1 = w, so w ∈ L(G).

2. w = 1x0. Same argument, instead using the rule S → 1S0 to start.
3. w = 0x0. We will use the rule S → SS here to produce w (see below).

51

4. w = 1x1. Here, we will use the rule S → SS analogously (see below).
For cases 3 and 4, must show that w can be decomposed into two parts
w = yz, both of which are in L(G).
Finishing cases 3 and 4 Claim: If w = 0x0 and n0(w) = n1(w), then we
can write w = yz, where n0(y) = n1(y), y ̸= ε, and z ̸= ε.
Why is this useful?

� Decompose w into two parts that are both shorter and in L.
� By the inductive hypothesis, they are then both also in L(G).
� Use the S → SS rule to start the derivation.

Why is it true?
� Basic idea: look at the balance between the number of 1s and 0s in
prefixes of w.

� The 1-letter prefix of w is 0, which has one more 0 than 1s.
� The (|w| − 1)-letter prefix of w is 0x, which has one fewer 0 than 1s.
(Why? We will wind up evening out at the last letter, which is 0.)

� This balance between 0s and 1s shifts by 1 each letter. It eventually
goes from +1 to −1.

� So at some point strictly in between, the balance is zero.
End of cases 3 and 4 Definitions:

� Let pi be the i-letter prefix of w.
� Let bi = n0(pi)− n1(pi).

With this in mind:
� b1 = 1, since p1 = 0.
� b|w|−1 = −1, since p|w|−1 = 0x, where 0x0 ∈ L, and
� b|w| = 0, since p|w| = 0x0 ∈ L.
� For any i, bi = bi−1 ± 1, depending on whether the ith character is 1 or
0.

� Since we must go from +1 to −1 by steps of 1, there must be some i
satisfying 1 < i < |w| − 1 such that bi = 0.

� Decompose w = yz, then, taking y to be the i-letter prefix of w and z
the rest of w.

� The two substrings y and z are both shorter (and both in L by con-

struction), so we can use S → SS
∗⇒ Sz

∗⇒ yz = w as our derivation
for w.

Thus, w ∈ L(G). (This works for Case 4 also, swapping 0 and 1.)

We are done!

52

� We were given the language L = {w ∈ {0, 1}∗ | n0(w) = n1(w)}, and
told to show it is context free.

� We gave a grammar G, and asserted that L(G) = L.
– We showed that L(G) ⊆ L, by showing that any word derived in

G had an equal number of 0’s and 1’s.
– We showed that L ⊆ L(G), by showing that any word with an

equal number of 0’s and 1’s could be derived in G.
� Hence, L is context free.
� (You can easily prove that L is not regular, using the pumping lemma
on 0n1n.)

9 Lecture 09

Outline
1. Parse Trees - M5 26-33
2. Ambiguity in Context-Free Grammars - Definitions - M5 34-43

9.1 Parse Trees

Key Idea: A parse tree is a visual presentation of a derivation.
Example: Consider this grammar (which generates palindromes) from the
slides:

G : P → ε | 0 | 1 | 0P0 | 1P1.

Exercise: Give a rigourous proof that L(G) is actually the language of
palindromes. (A palindrome is a word that reads the same backwards as
forward.)
The derivation in this grammar

P ⇒ 0P0 ⇒ 00P00 ⇒ 00100

53

is represented by the parse tree

P

�� �� ��
0 P

�� �� ��

0

0 P

��

0

1

Parts of the Tree:
� Root of the tree (top of the picture): some variable
� Internal nodes of the tree: variables generated by some production
� Leaves of the tree: variables, terminals, or ε, generated by some pro-
duction

Definition 9.1.1. Given a context-free grammar G, a rooted tree is a parse
tree for a derivation in G if

1. the root is a variable in G,
2. the interior nodes are labelled by variables in G,
3. the leaves are either labelled by variables of G, terminals in the grammar

G, or ε (If a leaf is labeled by ε, then it must be the only child of its
parent), and

4. if there is an internal node labelled A, whose children are labelled B1, B2, . . . , Bk

(for some k ≥ 1), then there must be a production A → B1B2 · · ·Bk in
G.

Any subtree of a parse tree is also a parse tree, unless it is a leaf.

Q & A
1. Why must a leaf labelled ε be the only child of its parent?

A: If we had an ε-leaf, not an only child, the last rule in our definition
of a parse tree requires that the production that made the ε-leaf have
an extraneous ε in it, which would never be needed, e.g.

P

�� ��
ε 1

54

Then the grammar must have a production P → ε1. We agree to
always simplify such rules: P → 1. Similarly,

P

�� ��
ε ε

could just keep P → ε. Because we want to describe our languages as
succinctly as possible, we only use ε in a production like S → ε. Hence
the parse trees won’t have ε-leaves as siblings of non-ε-leaves.

Definition 9.1.2. Given a parse tree, the yield of the tree is the concatena-
tion of the symbols at the leaves of the tree, in order from left to right. (N.B.
Don’t include ε in the concatenation.)

Example: The yield of the above parse tree is 00100.

Definition 9.1.3. A parse tree is full if its root is the start variable in the
grammar, and if all its leaves are labelled with terminals or ε. In these trees,
the yield is to a word in the language of the grammar.

Remarks:
1. Order matters here. We read the yield of a parse tree along the leaves,

from left to right. Recall this grammar from the proof of Theorem
8.1.6:

S → ε | 0S1 | 1S0 | SS
These two parse trees over this grammar have different yields:

S

�� �� ��
0 S

��

1

ε

S

�� �� ��
1 S

��

0

ε

2. The above parse tree with yield 00100 is full.
3. We can go from derivations to parse trees and back.
4. As in the slides, we could formalize this correspondence, but we will

not.

55

9.2 Ambiguity in Context-Free Grammars - Definitions

Definition 9.2.1. A context-free grammar, G, is ambiguous if there is a
word w ∈ L(G) with more than one leftmost derivation (or equivalently more
than one parse tree).

Example: This grammar, given in the slides, is ambiguous:

G : S → S ∗ S | S + S | (S) | a

S

�� �� ��

S

�� �� ��
S

��

+ S

�� �� ��

S

�� �� ��

+ S

��
a S

��

+ S

��

S

��

+ S

��

a

a a a a

Both trees yield a+ a+ a, but the derivations are different!

Definition 9.2.2. A context-free grammar G is unambiguous if it is not
ambiguous (i.e. G is unambiguous if and only if every x ∈ L(G) has a unique
derivation in G).

Definition 9.2.3. A context-free language L is inherently ambiguous if
every context-free grammar G such that L(G) = L is ambiguous.

Remarks:
1. It should be clear that for parsing purposes, unambiguous grammars

are desirable.
2. If a CFL is inherently ambiguous, then there is no hope.
3. Sometimes the first grammar we might write down is ambiguous, but

there is a non-ambiguous alternative grammar that generates the same
language.

4. The above grammar is ambiguous, but its language is not inherently
ambiguous. the example of replacing the grammar with a different, un-
ambiguous grammar which generates the same language, demonstrates
this.

56

Setup for the Example from the Slides:
1. We will show that the grammar G : S → S ∗ S | S + S | (S) | a is

ambiguous.
2. We will show that the new grammar G′, with three variables:

� E for expressions (which is the start variable): E → E + T | T
� T for terms, which can be added together to make expressions:
T → T ∗ F | F

� F for factors, which can be multiplied into products: either the
single terminal a or a parenthesized expression: F → (E) | a

is unambiguous, and generates the same language.
3. Examples like this one tend to be tedious, but not difficult.
4. You will do an example of removing ambiguity like this one on A03.

Q & A
1. If G is ambiguous, can L(G) be non-inherently ambiguous?

A: Yes, per the current example. Remember, ambiguity applies to
grammars; inherent ambiguity applies to languages.

2. Why is ambiguity bad?
A:
(a) CFGs / CFLs play a role in compilers. In compiling, ambiguity is

bad.
(b) In CS 360, we study formal languages (currently, CFLs). Suppose

we want to prove that all words in some CFL have some property.
It is good for us if every word in the CFL has a unique derivation.
If multiple derivations are possible, then our proofs will get much
more complicated.

10 Lecture 10

Outline
1. Ambiguity in Context-Free Grammars - Example - M5 44-67

10.1 Ambiguity in Context-Free Grammars - Example

Consider the language of the grammar

G : S → S ∗ S | S + S | (S) | a

Where does this grammar acquire ambiguity? Two ways:

57

1. We can derive a + a + a in two different ways: no sense of order in
associativity. See the previous lecture for the corresponding diagram.

2. We can derive a + a ∗ a in two different ways: no sense of operator
precedence.

S

�� �� ��

S

�� �� ��
S

�� �� ��

∗ S

��

S

��

+ S

�� �� ��
S

��

+ S

��

a a S

��

∗ S

��
a a a a

Strategy to Remove Ambiguity:
Separate expressions being multiplied, added or parenthesized

� If we have the sum of two terms, we cannot use that as a factor in a
product.

� The factors being multiplied in a product have to be either products
themselves, or a or a parenthesized expression.

� If we have the sum of three terms, we have to sum the first two, and
then sum this result with the third (e.g. a+ a+ a means (a+ a) + a).

A new grammar This idea suggests a grammar G′ with three variables:
� E for expressions (which is the start variable): E → E + T | T
� T for terms, which can be part of a sum: T → T ∗ F | F
� F for factors, which can be multiplied into products: either the single
terminal a or a parenthesized expression: F → (E) | a

(Q: Why not E → T +T | T ? A: Because then there is still no unique way
to derive a+ a+ a. We need to make sure that there is exactly one way of
generating every expression!)
This grammar includes the order of operations. It is also unambiguous and
generates the same language.
Formal statement of our result

Theorem 10.1.1. If G is the grammar

S → S + S | S ∗ S | (S) | a,

and G′ is the grammar with rules:

58

� E → E + T | T ,
� T → T ∗ F | F ,
� F → (E) | a,

then
1. G′ is unambiguous, and
2. L(G′) = L(G).

Remark: This is not going to be a short proof.

Lemma 10.1.2. First, consider G′:
1. If T

∗⇒ x, then x has no + character outside of parentheses.
2. If F

∗⇒ x, then x has no + or ∗ characters outside parentheses.
3. If x has no + or ∗ characters outside parentheses, then F

∗⇒ x.
4. If x has no + characters outside parentheses, then T

∗⇒ x or F
∗⇒ x.

Proof: This is clear from the rules of G′. Prove by structural induction on
G′ if you are not already convinced. □
We will use these facts quite a lot.
Examples which are ambiguous in G, now unambiguous in G′:

1. In this new grammar, a+ a+ a has only one parse tree:

E

�� �� ��
E

�� �� ��

+ T

��
E

��

+ T

��

F

��
T

��

F

��

a

F

��

a

a

59

2. and similarly, a+ a ∗ a has only one parse tree:

E

�� �� ��
E

��

+ T

�� �� ��
T

��

T

��

∗ F

��
F

��

F

��

a

a a

First: G′ is unambiguous We will prove something stronger:

Lemma 10.1.3. If, for some string x containing only alphabet symbols, we
have E

∗⇒ x or T
∗⇒ x or F

∗⇒ x, then there is a unique left-most derivation
for that string from E, T or F , respectively.

Q & A
1. Are all of E,F and T starting variables?

A: No. E is the starting variable.
2. Given the above answer, why do we care about F and T?

A: Including all variables for the Lemma makes our induction hypoth-
esis stronger. This turns out to be useful.

Proof. by induction on |x|:
� Base case (|x| = 1): Then x = a.

– If E
∗⇒ a, then the only possible derivation is: E ⇒ T ⇒ F ⇒ a.

– If T
∗⇒ a, then the only possible derivation is: T ⇒ F ⇒ a.

– If F
∗⇒ a, then the only possible derivation is: F ⇒ a.

� Inductive case (|x| > 1): Inductive Hypothesis: Any y with E
∗⇒
G′

y, T
∗⇒
G′

y or F
∗⇒
G′

y and |y| < |x| has a unique leftmost derivation from E, T

or F , respectively.
� Now, let’s look at x ∈ L(G′) and figure out how we got to where we
are.

60

Three cases for the induction We will examine x and see what it has
outside of parentheses:

1. x has a + symbol outside of parentheses,
2. x has no + symbol outside of parentheses in x, but has a ∗ outside of

parentheses, or
3. x has neither a + symbol nor a ∗ symbol outside of parentheses.

Case 1 Assume x has a + symbol outside of parentheses.
Basic idea: Writing x = y + z, argue that we must start with the rule
E → E + T where E

∗⇒ y and T
∗⇒ z, and then argue that y and z must

have unique derivations, by Lemma 10.1.2.
� If x has a + outside of parentheses, then T ̸ ∗⇒ x and F ̸ ∗⇒ x (Lemma
10.1.2 for both).

� The only remaining possibility is that E
∗⇒ x.

� So the first rule used in any derivation of x in G′ must be E → E + T .
� We know that x ∈ L(G′), so there must be some way, now, to generate

x = y + z, where E
∗⇒ y and T

∗⇒ z.
� But by our induction hypothesis, the ways of generating y and z are
unique, so for this decomposition x = y + z, there exists exactly one
way of generating x.

� Q: Could we choose y and z in different ways?
� A: No: we know that y must finish immediately before the last +
symbol outside parentheses in x.

– If not, then z has a + symbol outside parentheses, and thus by
Lemma 10.1.2 z cannot be generated from T .

– But we know that T
∗⇒ z.

� So, for this case, the only leftmost derivation for x is: E ⇒ E + T
∗⇒

y + T
∗⇒ y + z, and x is unambiguously derived.

Case 2 Assume x has no + outside parentheses, but does have a ∗ outside
parentheses.

� We cannot start with the E → E + T rule, so we must start with
E → T instead.

� But since there is a ∗ outside parentheses, by Lemma 10.1.2, F ̸ ∗⇒ x.
� So we cannot use T → F and we must use the T → T ∗F rule instead.
We are going to thus be decomposing x into x = y ∗ z.

� As in the proof for Case 1 (since F
∗⇒ z), z must have no ∗ outside

parentheses, so it is uniquely chosen.
� Again, for x = y ∗ z, y and z have unique derivations by induction, and

61

hence there is a unique derivation for x.
Case 3 Assume x has neither * nor + outside parentheses.

� But then x = (y) for some y, since we are not in the base case, namely
the case where x = a.

� We must start the derivation with E ⇒ T ⇒ F ⇒ (E).
� Then we follow the derivation for y, which is unique by the induction
hypothesis.

This handles all three possibilities for a word in L(G′). In all cases, they
have a unique derivation.
Hence, the grammar G′ is unambiguous.

That is the proof that the new grammar is unambiguous. This proves part
1 of Theorem 10.1.1.
What about the proof that L(G) = L(G′) (part 2 of Theorem 10.1.1)?

Proof. Proof that L(G′) ⊆ L(G): Let x ∈ L(G′) be arbitrary. The proof is
by induction on |x|.
Base case (|x| = 1): If , then x = a, since that is the only 1-letter word in
L(G′), and it is the only 1-letter word in L(G), too.
Inductive case (|x| > 1): Inductive Hypothesis: every y ∈ L(G′) such that
|y| < |x| satisfies y ∈ L(G). Consider the unique derivation of x in G′.
How is x derived? Three cases for the start of the unique derivation of x in
G′:

1. E → E + T
∗⇒ x.

2. E ⇒ T ⇒ T ∗ F ⇒ ∗⇒ x
3. E ⇒ T ⇒ F ⇒ (E)

∗⇒ x
Case 1: x derives from E → E + T

� Write x = y + z, where E
∗⇒ y and T

∗⇒ z.
� Since E

∗⇒ y, therefore y ∈ L(G′).

� Since E ⇒ T
∗⇒ y, therefore z ∈ L(G′).

� We can derive z in G′ using E ⇒ T
∗⇒ z.

� Both y and z are in L(G′) and are strictly shorter than x, so they are
both in L(G) by our inductive hypothesis.

� Derive x in L(G) via

S ⇒ S + S
∗⇒ y + S

∗⇒ y + z = x,

so that x ∈ L(G).
Case 2: x derives from E ⇒ T ⇒ T ∗ F ⇒ · · ·

62

� Then x = y ∗ z, where T
∗⇒ y and F

∗⇒ z.
� Since T

∗⇒ y, we can derive y via E ⇒ T
∗⇒ y, and therefore E

∗⇒ y.
� Since F

∗⇒ z, we can derive z via E ⇒ T ⇒ F
∗⇒ z, and therefore

E
∗⇒ z.

� So y and z are in L(G′) and are shorter than x.
� By the inductive hypothesis, y and z are in L(G), and we can derive x
in G by

S ⇒ S ∗ S ∗⇒ y ∗ S ∗⇒ y ∗ z = x.

Case 3: x derives from E ⇒ T ⇒ F ⇒ (E) ⇒ · · ·
� Then x = (y), where E

∗⇒ y.

� The induction hypothesis applied to y says S
∗⇒ y.

� Therefore we can derive x in G via

S ⇒ (S)
∗⇒ (y) = x.

So we see that L(G′) ⊆ L(G).
Proof that L(G′) ⊇ L(G): Let x ∈ L(G) be arbitrary. The proof is by induc-
tion on |x|.
Base case (|x| = 1): Then x = a ∈ L(G′); seen before.
Inductive case (|x| > 1):

� Inductive Hypothesis: Assume all words y ∈ L(G) such that |y| < |x|
satisfy y ∈ L(G′).

� Then x = y + z or x = y ∗ z or x = (y) for y and z also in L(G).
� We will have three cases, depending on how x can be derived in G.
� As derivations in G need not be unique, we need to carefully state what
the cases are.

Cases for the Inductive part of the proof:
1. x has at least one derivation of the form S ⇒ (S)

∗⇒ (y), where x = (y).
2. x has no such derivation, but has at least one derivation of the form

S ⇒ S + S
∗⇒ y + z, where x = y + z.

3. The only derivations for x have the form S → S ∗ S ∗⇒ x.
Case 1: x has at least one derivation of the form S ⇒ (S)

∗⇒ (y),
where x = (y): Suppose that one derivation for x in G is:

S ⇒ (S)
∗⇒ (y).

� Then in G′ we can use the derivation: E ⇒ T ⇒ F ⇒ (E) · · ·

63

� Since S
∗⇒
G

y, and |y| < |x|, our inductive hypothesis tells us that

y ∈ L(G′), i.e. E
∗⇒
G′

y.

� Therefore in G′ we have E ⇒ T ⇒ F ⇒ (E)
∗⇒ (y) = x, which

witnesses the fact that x ∈ L(G′).

Case 2: S ⇒ S + S
∗⇒ y + z, where x = y + z: Suppose that x has

no derivation as in Case 1, but has at least one derivation in G of the form
S ⇒ S + S

∗⇒ y + z, where x = y + z.
� Problem: we want to start the derivation of x in G′ using the produc-
tion: E → E + T .

� By the induction hypothesis, E
∗⇒
G′

y and E
∗⇒
G′

z, but to apply the

desired production in G′, we need to know that T
∗⇒
G′

z.

� Idea: Choose y as long as possible, so that z has no + symbols outside
of parentheses.

� Then, as above, we still have E
∗⇒ y, but now we can only use E ⇒

T
∗⇒ z to derive z in G′.

� But then we do have T
∗⇒
G′

z, as required.

� Putting it all together, in G′ we have E ⇒ E + T
∗⇒ y + z = x.

� This witnesses the fact that x is in L(G′).
Case 3: S ⇒ S ∗ S, where x = y ∗ z: This last case is quite similar.

� Suppose that the only derivations for x start by using the production
S → S ∗ S.

� Because x has no derivation beginning with S → S+S, therefore every
+ in x must be inside parentheses.

� If x contains an exposed +, then we can write x = y + z, with S
∗⇒ y

and S
∗⇒ z, so that we can always find a derivation for x which starts

with S → S + S, contradicting the case that we are in.
� Write x = y ∗ z, choosing y as long as possible such that we can still
derive both y and z from S in G.

� Then y is a word in L(G), shorter than x, and hence by the induction
hypothesis is in L(G′).

� But then y must be derivable in G′ via E ⇒ T
∗⇒ y, since y has no

exposed + characters.
� Also, z must have no exposed + or ∗ characters, yet still be in L(G).

� Therefore z is derivable in G′ by E ⇒ T ⇒ F
∗⇒ z.

� So finally in G′ we can derive x by E ⇒ T ⇒ T ∗ F ∗⇒ y ∗ F ∗⇒ y ∗ z.

64

� Thus x ∈ L(G′).

Recap of the proof: Overall, we have shown:
1. G′ is unambiguous
2. Words in L(G′) are in L(G).
3. Words in L(G) are in L(G′).

(All 3 proofs by induction.)
The third proof was probably hardest: the content was to reconstruct the
way in G′ to derive each word of L(G).
Hence, L(G) is not inherently ambiguous: G′ is an unambiguous grammar
for it.
What does this show us? Ambiguity can, sometimes, be removed:

� Identify the source of ambiguity.
� Re-organize to identify precedence or other desired grammar rules.
� Such proofs are long, but useful: we really do need unambiguous gram-
mars in practice.

11 Lecture 11

Outline
1. Introduction to Pushdown Automata - M6 1-10
2. Computations in a PDA - M6 11-16
3. Bad things in PDAs - M6 17-18
4. Language of a PDA - M6 19-25

11.1 Introduction to Pushdown Automata

From an ε-NFA to a PDA
Add memory to an ε-NFA, in the form of a stack. Each transition is of the
form:

� If
– top letter on the memory stack is b, and
– the next letter in the input word is a (or ε, if we take an ε-

transition), and
– the controlling FA is in state q,

� then:

65

– Go to state r,
– Pop the b off the top of the memory stack,
– Consume the letter a from the input (again, a might be ε), and
– Push a word w onto the top of the memory stack.

� We will define the stack alphabet as part of the definition of the PDA.

a

w

Remarks:
1. This is modelled on an ε-NFA, which is inherently nondetermin-

istic. Therefore every thread running in a PDA has its own stack,
independent of the stacks in the other threads.

More details about how PDA work
The stack must never become empty:

� There is a special “stack empty” symbol Z0.
– If Z0 is on the top of the stack, we make sure to re-push at least

Z0 onto the stack as we take a transition.
� The string put on the stack

– may be empty (then the stack becomes 1 symbol shorter), or long,
– does not have to just be 0 or 1 letters long!
– must be of finite length.

(We will see later that deterministic PDAs are less powerful than nonde-
terministic ones!)

Definition 11.1.1. A pushdown automaton (PDA) is a 7-tuple, M =
(Σ, Q, F, q0,Γ, Z0, δ), where:

� Σ is an alphabet
� Q is a finite set of states for FA control
� F is a set of accept states for FA control
� q0 is the start state for FA control
� Γ is a finite stack alphabet (often it is just Γ = {Z0} ∪ Σ, but Γ can
be any finite set)

� Z0 is the special empty stack symbol (the stack is initialized with just

66

Z0 on it)
� δ : Q×(Σ ∪ {ε})×Γ → finite subsets of Q×Γ∗ is the transition function

Remarks on Definition 11.1.1:
1. Z0 /∈ Σ.
2. Q: Why does δ map into finite subsets of {Q× Γ∗}? A: There are an

infinite number of words in Γ∗ that we could put on the stack! The
machine description must be finite.

PDA Diagrams
We draw PDAs like DFAs, with more robust labels of edges:

1. Edges are labelled by both the input letter (e.g. a or ε) and the top
symbol of the stack (e.g. b); these are separated by a comma.

2. We also must show what word w is pushed onto the stack: this follows
a “/” character. The beginning of the string is the top of the stack
after the transition occurs. Examples:
(a) if the stack is empty, and we push w = 10 onto the stack, then 1

is on top of the stack and 0 is below 1.
(b) If we read Z0 from the stack, then push 01Z0 onto the stack, then

we imagine the stack contents as
0
1
Z0

3. It is possible that ε is pushed onto the stack: this makes the stack
become shorter.

Example:

// q0

0, Z0/0Z0

0, 0/00

II

ε, Z0/Z0

1, 0/ε
// q1

1,0/ε

II

ε,Z0/Z0 // q2

Remarks:
1. Naming this PDA P , we will see later that L(P) = {0i1i | i ≥ 0}.
2. By the end of M6, we will prove the analog of Kleene’s Theorem for

CFLs and PDAs. By Kleene’s Theorem, L(P) is a CFL.
3. Exercise: Give a CFG, G, such that L(G) = L(P).

67

11.2 Computations in a PDA

Definition 11.2.1. Given a PDA, its instantaneous description is a
triple (q, w, γ), where

1. q is the state the machine is in,
2. w is the word remaining on input, and
3. γ is the stack contents.

Remarks:
1. PDAs are non-deterministic: they can have multiple threads.
2. Definition 11.2.1 describes one thread only.

3. We don’t attempt to define δ̂ for PDAs. Because of the stack, it is too
cumbersome. We have to write down each thread separately.

We need a way to characterize one step in the PDA’s computation:
� This is more complicated than the δ̂ notation for finite automata: we
need to show what happens to the stack.

� Notation describes what could follow the current configuration of the
computation.

� Our new notation describes “one path” of the PDA’s computation: to
simulate the whole PDA, you would need to present all nondetermin-
istic possibilities.

Transitions in the PDA
What happens if we go forward one step?

� Let (q, w, γ) and (p, z, ζ) be two instantaneous descriptions of a PDA’s
configuration.

� From the first to the second in one transition: (q, w, γ) ⊢ (p, z, ζ).
� What does that really mean? Two possibilities:

1. If γ = Xβ and w = az, where
(a) |X| = 1, and
(b) |a| = 1,
(c) then δ(q, a,X) contains (p, α), where ζ = αβ.
(d) I.e. there is a transition:

q
a,X/α

// p

Remember also that α is of finite length.
2. Or if γ = Xβ and w = εz = z, where

(a) |X| = 1,

68

(b) then δ(q, ε,X) contains (p, α), where ζ = αβ.
(c) I.e. there is a transition

q
ε,X/α

// p

3. Then we write (q, w, γ) ⊢ (p, z, ζ).
4. Read ⊢ as “produces in one step”.

If the machine P needs to be indicated explicitly, then write I ⊢
P
J .

Longer derivations
1 step in P : (q, x, β) ⊢

P
(q′, x′, α).

An arbitrary (finite) number of steps: (q, x, β)
∗
⊢
P
(q′, x′, α).

Definition 11.2.2. Proper inductive definition of I
∗
⊢
P
J :

1. Base case: For any instantaneous description I, I
∗
⊢
P
I.

2. Inductive case: If I ⊢
P
K and K

∗
⊢
P
J , then I

∗
⊢
P
J .

(I.e. there exists a finite sequence of instantaneous descriptionsK1, K2, . . . , Kn

such that I = K1, J = Kn and for all i = 1, . . . , n− 1, Ki ⊢
P
Ki+1.)

Reminders:
1. PDAs are non-deterministic. They can have multiple threads.
2. This describes one thread only.

We will not attempt to define an analogue to δ̂ for PDAs.

11.3 Bad things in PDAs

There are two bad kinds of events too worry about here. Both are also
possible with ε-NFAs.

1. Running forever, using ε-transitions:
� There are only a finite number of possible states we can reach
following ε-transitions, and they will cycle. E.g.

// p

ε,Z0/Z0

q

ε,Z0/Z0

``

69

� But now we also can grow the stack, so the configurations are

different at each step.
ε, Z0/Z0Z0

� (q0, x, Z0) ⊢ (q0, x, Z0Z0) ⊢ (q0, x, Z0Z0Z0) ⊢ (q0, x, Z0Z0Z0Z0)
∗
⊢

· · ·
� One thread can run forever, or the machine can spawn infinitely
many threads. This example produces infinitely many instantaneous descriptions,
because the stack keeps growing.

Remark: This is a DPDA, so even DPDAs can run forever.
2. Crashing A PDA thread crashes if there are no available transitions

from the current instantaneous description, or if the stack is empty
with some input characters remaining.

� No available transitions: if the current instantaneous description
is (q, x, z), where x = aw and z = Xβ for some alphabet symbol
a and stack symbol X, and if the sets δ(q, a,X) and δ(q, ε,X) are
both empty, then the PDA can make no transitions and therefore
crashes.

� Empty stack: If the current instantaneous description is (q, x, ε)
for some x ̸= ε, then the PDA can make no transitions and there-
fore crashes.
– It is supposed to remove the top stack symbol as it makes its

next transition, but there is no top stack symbol!
– Note that, if the machine arrives at an instantaneous descrip-

tion (q, ε, ε), then the machine will not crash; it will
* accept if q ∈ F , and
* reject otherwise.

11.4 Language of a PDA

Useful Facts:
A valid PDA computation remains valid if we:

1. Append string w ∈ Σ∗ to the end of the input for all Ki.
2. Append string γ ∈ Γ∗ to the end of the stack for all Ki.

70

3. Remove an unused suffix from the input for all Ki.
Why do we care?

� Let us isolate part of a computation.
� Adding to the end of the stack will help us with some theorems about
the equivalence of PDAs and CFGs.

We can prove the first two principles in the same theorem:

Theorem 11.4.1. Suppose that for a given PDA P , (q, x, α)
∗
⊢
P

(p, y, β).

Then for any strings w ∈ Σ∗ and γ ∈ Γ∗, it is also the case that

1. (q, xw, α)
∗
⊢
P
(p, yw, β), and

2. (q, x, αγ)
∗
⊢
P
(p, y, βγ).

Proof. Consider all transitions that show: (q, x, α)
∗
⊢
P
(p, y, β).

1. None of these transitions uses characters of w or γ.
2. As such, each transition is valid in the modified computation.

Removing common suffixes Similarly, if we remove a common suffix from
the input, the computation remains valid:

Theorem 11.4.2. If (q, xw, α)
∗
⊢
P
(p, yw, β), then (q, x, α)

∗
⊢
P
(p, y, β).

Proof. This is easily shown by following all of the transitions in the first
derivation.

1. None of them consumes any of the letters of w, since we can only remove
symbols from the input of a PDA, never add to the input.

2. As such, each transition is also valid in the modified computation.

How does a PDA accept?

Definition 11.4.3. A PDA, P accepts word w if there exists a valid com-
putation

(q0, w, Z0)
∗
⊢
P
(q, ε, y),

for some state q ∈ F , and some y ∈ Γ∗.

71

I.e. at least one thread in P reaches a final state by the end of input. It
does not matter if other threads reject or crash; provided one thread accepts,
P accepts w.

� This is called acceptance by final state.
� Soon we will accept if the stack empties at the same moment that the
last input symbol has been processed (called acceptance by empty
stack).

Definition 11.4.4. The language of a PDA P is

L(P) = {w ∈ Σ∗ | P accepts w} ,

as in Definition 11.4.3.
An example: L = {0i1i}
A PDA for L = {0i1i | i ≥ 0}:

� Recall that this language is not regular.
� PDAs can be hard to draw!
� This one has three states:

– q0 for pushing 0s onto the stack, while reading them from the
input word,

– q1 for popping 0s off of the stack, while reading corresponding 1s
from the input word, and

– q2 for accepting at end of word.

// q0

0, Z0/0Z0

0, 0/00

II

ε, Z0/Z0

1, 0/ε
// q1

1,0/ε

II

ε,Z0/Z0 // q2

How does this work?
For words in L:

� Start with stack Z0.
� Add 0 symbols from w to the stack.
� . . . until we reach the first 1 symbol. Then, we absorb 0s from the stack
and corresponding 1s the input.

� . . . until we are done, and then we follow the ε-transition to q2 and
accept.

72

For example, on the input 0011, a computation witnessing acceptance is:

(q0, 0011, Z0) ⊢ (q0, 011, 0Z0)

⊢ (q0, 11, 00Z0)

⊢ (q1, 1, 0Z0)

⊢ (q1, ε, Z0)

⊢ (q2, ε, Z0)

Remark: Any stack contents are fine for acceptance by final state.
Some formality

1. Only words w ∈ 0∗1∗ can have the property that (q0, w, y)
∗
⊢ (q2, ε, z)

for any strings y and z, since we transition from q0 to q1 by consuming
a word from 0∗(1 + ε), and we transition from q1 to q2 by consuming a
word from 1∗ε; the concatenation of these is 0∗1∗.

2. The only valid computation after reading in 0i for i > 0 is (q0, 0
iw,Z0)

∗
⊢

(q0, w, 0
iZ0).

3. Now consider what occurs upon processing 0i1k.
4. If k < i, then all threads crash after reaching q1. So from now on, we

will consider k ≥ i.

5. The only valid computation after reading in 0i1k is (q0, 0
i1kw,Z0)

∗
⊢

(q1, w, 0
i−kZ0), unless k = i, at which point we can transition to (q2, ε, Z0).

If k > i, then the machine has no valid computations that read the first
i+ k symbols.

6. We can only accept if after reading in 0i1i, there are no more symbols
to read, so we need not fear accepting 0i1k when k > i.

Another example: a PDA for palindromes See the slides for the details.
Moral: By the Theorem at the end of M6, the language of palindromes is a
CFL.

12 Lecture 12

Outline
1. Acceptance By Empty Stack - M6 31-36

73

12.1 Acceptance By Empty Stack

Motivation: By the end of Module 6, we will establish a correspondence
between CFLs and PDA languages. It will turn out that establishing this
correspondence will be easier with acceptance via empty stack than via final
state.
Current model of acceptance:

� The language of the machine is

L(P) =

{
w ∈ Σ∗ | ∃ a computation (q0, w, Z0)

∗
⊢
P
(p, ε, α) for some p ∈ F, α ∈ Γ∗

}
New model of acceptance, by empty stack:

� The language of the machine is

N(P) =

{
w ∈ Σ∗ | ∃ a computation (q0, w, Z0)

∗
⊢
P
(p, ε, ε) for any state p

}
.

This is called acceptance by empty stack, for obvious reasons.
A PDA accepting by empty stack does not have accept states, so is a 6-tuple:
(Σ, Q, q0,Γ, Z0, δ).
Key fact about acceptance by empty stack

Theorem 12.1.1. 1. Suppose that PF is a PDA that accepts by final
state. Then there exists a PDA, PN , which accepts L(PF) by empty
stack.

2. Suppose that PN is a PDA that accepts by empty stack. Then there
exists a PDA, PF , which accepts N(PN) by final state.

Remark on Why We Care About Theorem 12.1.1 We will use ac-
ceptance by empty stack to show that PDAs accept exactly the class of
context-free languages.

Proof. From final state to empty stack
Suppose we are given a PDA PF whose language, using acceptance by final
state, is L. We will construct a new PDA, PN , accepting by empty stack,
such that PN accepts exactly L.

� To make PN accept whenever PF accepts:
– From every accept state in PF , take an ε-transition to a “drain”

state that empties the stack. The drain state has no outgoing
transitions.

74

� To prevent PN from accepting whenever PF does not accept:
– If there are input letters remaining when the above ε-transition is

taken, then the thread crashes.
– To handle PF ’s stack correctly, create a new empty stack symbol,

X0 in PN . Push X0 onto PN ’s stack before pushing Z0 to start
simulating PF .

– It is crucial that X0 not be in the stack alphabet for PF .
– We only pop the X0 character when we are transitioning to, or

already in, our new “drain” state.
– I.e. we need X0 so that, if PF crashes because of empty stack, the

constructed machine PN will not accept.
– All computations in PF happen as before, so we can only remove

Z0, and then X0, from the stack when PF would have already
accepted.

New pushdown automaton PN :

start
ε,X0/Z0X0 ε, ∗/ε

ε, ∗/ε

PF

Remark: Both ∗s here include X0 in the set of all stack symbols in the
constructed machine, PN .

From empty stack to final state
A similar technique can be used to construct a PDA, PF , with L(PF) = L,
given a PDA PN with N(PN) = L.
Again, we need a special character X0 added to the end of the stack that
only gets removed after PN would have accepted.

� Again, it is crucial that X0 not be in the stack alphabet for PN .
� Here, the X0 character alerts us that we have removed all of the stack
characters inside of PN (so we should accept, provided the input is also
used up).

� Without this special symbol, we would crash trying to detect empty
stack.

� When we see this special character, X0 in any state, we take an ε-
transition to the machine’s only final state. Again, the final state has
no outgoing transitions.

75

To ensure that the new PDA PF only accepts (by final state) the words PN

accepts:
� PF accepts precisely when we exhaust the input string at the same
moment that we empty the stack.

� If we have not processed the entire input word, the machine crashes
instead of accepting.

New pushdown automaton PF :

start
ε,X0/Z0X0

ε,X0/ε in all cases

PN

Note: We have not rigourously proved either construction. Both proofs are
in the text, not especially enlightening.

13 Lecture 13

Outline
1. Equivalence of PDAs and CFGs - M6 37-56

13.1 Equivalence of PDAs and CFLs

Theorem 13.1.1. 1. Given a CFG G whose language is L, there exists
a PDA P such that N(P) = L.

2. Given a PDA P where N(P) = L, there exists a CFG G such that
L(G) = L.

Note: We will prove using acceptance by empty stack in both cases.
How to construct a PDA from a grammar
Start with the grammar G = (V, T, P, S). Construct the PDA

P = {T, {q}, q, V ∪ T, S, δ},

where δ has the following members:

76

� For all rules A → β in the grammar, δ(q, ε, A) includes (q, β). There
are no other members of δ(q, ε, A).

� For all terminals a ∈ T , δ(q, a, a) = {(q, ε)}.
� All other values of δ(q, x, y) are ∅.

q

ε, A/β
for all A → β

a, a/ε
for all a ∈ Σ

Theorem: This PDA, P , accepts L(G) by empty stack. Two parts: L(G) ⊆
N(P), and N(P) ⊆ L(G). We will begin with showing that L(G) ⊆ N(P).

� Let w ∈ L(G) be arbitrary.
� Then there exists some leftmost derivation for w in G :

S = γ1 ⇒
lm

γ2 ⇒
lm

γ3 ⇒
lm

· · · ⇒
lm

γn = w.

� For all 1 ≤ i < n, γi has a a leftmost variable.
– For 1 ≤ i < n, write γi = xiαi, where the xi prefix is all ter-

minals and αi begins with the leftmost variable, Ai, in γi. By
construction, each xi is a prefix of w.

– Write w = xiyi, for some string yi ∈ Σ∗.
� I Claim that: In the PDA, because the transitions are defined from

the productions of G, we have (q, w, S)
∗
⊢
P
(q, yi, αi) for all 1 ≤ i ≤ n.

(We prove this claim rigourously, below.)

� Then in particular, taking i = n gives (q, w, S)
∗
⊢
P
(q, ε, ε), and so w ∈

N(P), because P accepts w by empty stack.
Proof of the claim, by induction on i:

� Base case (i = 1): x1 = ε, y1 = w, α1 = S, so we have that (q, w, S)
∗
⊢
P

(q, yi, αi) holds trivially.

� Inductive case (1 < i ≤ n): The inductive hypothesis is that (q, w, S)
∗
⊢
P

(q, yj, αj), for all j < i.

– By the induction hypothesis (q, w, S)
∗
⊢
P
(q, yi−1, αi−1), where

* w = xi−1yi−1,

77

* γi−1 = xi−1αi−1 and
* αi−1 = Ai−1ηi−1 for some variable Ai−1 and some suffix ηi−1.

– Everything constructed here comes from a leftmost derivation of
w in G, so there exists a production Ai−1 → βi−1 in G, for some
βi−1 (a string of terminals and/or variables).

– The productionAi−1 → βi−1 gives that δ(q, ε, Ai−1) contains (q, βi−1)
so (q, yi−1, αi−1) ⊢

P
(q, yi−1, βi−1ηi−1).

– By construction, yi−1 ∈ Σ∗.
– As everything constructed here comes from a derivation of w in

G, yi−1 and βi−1 must have a (possibly empty) prefix of matching
terminals.

– The leftmost variable in βi−1ηi−1 is Ai, which begins αi.
– Match all of the terminals at the top of the stack against the

terminals in the input yi−1 (using δ(q, a, a) = {q, ε} for all a ∈ T).

– Consume all matching terminals to obtain (q, yi−1, βi−1ηi−1)
∗
⊢
P

(q, yi, αi)

– Thus (q, w, S)
∗
⊢
P
(q, yi, αi).

The proof in the other direction We have proved L(G) ⊆ N(P). Now
we prove N(P) ⊆ L(G).
Let w ∈ N(P) be arbitrary. To show that w ∈ L(G), we will show something
more general:

� For any variable A, if (q, w,A)
∗
⊢
P
(q, ε, ε), then A

∗⇒
G

w.

� This is sufficient:

– By definition w ∈ N(P) means that (q, w, S)
∗
⊢
P
(q, ε, ε).

– Then applying the above implication, with A = S gives us that
S

∗⇒
G

w, in other words, w ∈ L(G).

The proof is by induction on n, the length of the chosen computation (q, w,A)
n

⊢
P

(q, ε, ε):
� Base case (n = 1;n = 0 is impossible since A ̸= ε):

– In the construction of the PDA P , the only transitions defined
for a non-terminal A at the top of the stack are ε-transitions cor-
responding to productions for A in G.

– So our computation must take one of these ε-transitions as its first
(and hence its only) step.

78

– As this ε-transition takes w to ε, therefore w = ε.
– Also (q, ε) ∈ δ(q, ε, A), so by construction there is a rule A → ε

in G.
– Therefore A

∗⇒
G

w as desired.

The inductive case (n > 1): The inductive hypothesis is that for all vari-

ables A, if (q, w,A)
∗
⊢
P
(q, ε, ε) in < n steps, then A

∗⇒
G

w. Now consider an

n-step computation (q, w,A)
∗
⊢
P
(q, ε, ε).

� The first step in the computation must use a production of the form
A → Y1Y2 · · ·Yk (where each Yi ∈ T ∪ V), since those are the only
rules valid when A is on top of the stack (and the transition is an
ε-transition). So (q, w,A) ⊢ (q, w, Y1 · · ·Yk).

� Decompose the computation from this time forward into phases:
1. takes stack from Y1 · · ·Yk to Y2 · · ·Yk

2. takes stack from Y2 · · ·Yk to Y3 · · ·Yk

3.
...

4. (k) takes stack from Yk to ε
� There will be some first point when the stack contains just Y2 · · ·Yk,
then some first point when the stack contains just Y3 · · ·Yk, and so on,
until the first time it has just Yk.
(Each step removes at most one symbol from the stack, and we even-
tually empty the stack.)

� Consider when the stack contains Y2 · · ·Yk: we know that (q, w,A) ⊢
P

(q, w, Y1Y2 · · ·Yk)
∗
⊢
P

(q, w′, Y2 · · ·Yk), for some suffix w′ of w, where

w = w1w
′.

� Rewriting the last statement, we have (q, w1w
′, Y1Y2 · · ·YK)

∗
⊢
P
(q, w′, Y2 · · ·Yk).

� Because we can delete the unread suffix w′ of the input word with-
out affecting the validity of the computation, we therefore have that

(q, w1, Y1Y2 · · ·Yk)
∗
⊢
P
(q, ε, Y2 · · ·YK).

� Moreover, since in the computation, we never touch the symbols of
Y2 · · ·Yk on the stack, we also have that (q, w1, Y1) ⊢

P
(q, ε, ε).

� If Y1 is a terminal, then by the shape of the PDA, (q, w1, Y1) ⊢
P
(q, ε, ε)

implies that w1 = Y1 is also a terminal, so that Y1
∗⇒
G

w1 holds trivially.

� Otherwise Y1 is a variable, and by construction, this computation wit-

79

nessing (q, w1, Y1) ⊢
P
(q, ε, ε) takes < n steps, therefore Y1

∗⇒
G

w1, by

our inductive hypothesis.
� To summarize, whether Y1 is a terminal or a variable, we have Y1

∗⇒
G

w1.

� We then apply this argument to each subsequent Yi, obtaining a deriva-
tion Yi

∗⇒
G

wi for all i, with w = w1w2 · · ·wk.

� Finally, we have a derivation for w, by combining these together: A ⇒
Y1 · · ·Yk

∗⇒
G

w1Y2 · · ·Yk
∗⇒
G

w1w2Y3 · · ·Yk
∗⇒
G

w1 · · ·wk = w

� This shows that A
∗⇒
G

w, as desired.

Next, from a PDA to a CFG
� We have shown the easier case: for a CFG G with language L(G) = L,
we can exhibit a PDA P such that N(P) = L.

� Now, given a PDA P (which accepts by empty stack), we must exhibit
a grammar G such that N(P) = L(G).

� This is harder.
– Suppose that, in P ,

(q, w,X)
∗
⊢ (p, ε, ε),

for some X ∈ Γ.
– How does that happen?

How do we consume one symbol from the stack?
� Suppose the first step in the computation is (q, az,X) ⊢ (r, z, Y1Y2 · · ·Yk),
where a ∈ T or a = ε.

� The process begins by removing X from the stack, replacing it with
some string Y1 · · ·Yk, and moving to state r. (“phase 1” for this com-
putation)

� Then, we go from state r to some state r1, eventually removing all of
the symbols of Y1 from the stack, so that it consists of just Y2 · · ·Yk;
this process may consume some input letters,from w, or it might not.
(“phase 2”)

� Eventually, we wind up in state p, in the instantaneous description
(p, ε, ε), having read all of the letters of w and all of the symbols in
Y1 · · ·Yk.

Making a grammar from this
To construct a grammar which generates the same language that the PDA
accepts, we need to construct our productions to mimic the action of the
transitions in the PDA.

80

� Include a non-terminal (i.e. variable) [qXp] for every stack symbol X
and every pair of states q and p.

� A string generated by the non-terminal [qXp] in G corresponds with
a (possibly partial) computation in the PDA. It will capture the input
letters consumed so far and the current stack contents.

� We want: [qXp]
∗⇒
G

w if and only if (q, w,X)
∗
⊢
P
(p, ε, ε).

� Now we need to construct the productions of the grammar to mimic
the transitions in P .

� Examine each rule of the transition function, one at a time.
� Suppose that δ(q, a,X) contains (r, Y1Y2 · · ·Yk). Note: a can be ε; so
can Y1 · · ·Yk.

– If the output pair is (r, ε), so that k = 0, then add a production
[qXr] → a.

* Read a, pop X, move to state r.
– Otherwise, if k > 0, then add productions [qXrk] → a[rY1r1][r1Y2r2] · · · [rk−1Ykrk]

to the grammar, for all choices of r1, . . . , rk from our state set Q.
* Read a, pop X, push Y1 · · ·Yk onto the stack, allowing for
any sequence r1, . . . , rk of states to be used to pop Y1 · · ·Yk,
in the end, move to state r.

� The language of the PDA is the union of the language corresponding
to emptying the stack in any possible state, so for every state p we
add a rule: S → [q0Z0p].

� Then by construction (q0, w, Z0)
∗
⊢ (p, ε, ε) if and only if S ⇒ [q0Z0p]

∗⇒
w, as we had wanted.

How does this work? The basic idea, again: Each PDA transition
� either consumes a symbol from the input, or does not,
� changes state and
� takes one symbol off the stack, and then puts some new symbols on the
stack, or does not.

To mimic this in one step of a leftmost derivation in the grammar which we
have just constructed:

� Look at the right hand side of a particular production.
� The terminal (or ε) at the beginning of the right hand side is exactly
what we expect to read from the input, according to the transition
function in the given PDA.

� Then the string of nonterminals, each of the form [rY1r1] or [ri−1Yiri]
indicate, in the Yi characters, the symbols that get pushed onto the

81

stack.
� The first state in the first non-terminal (namely r) is the state that the
PDA goes into.

� The following states correspond to the states the automaton will be in
when we have shrunk the stack.

The proof Actually, we are not going to do it.
� The basic structure is not especially interesting; it is in Section 6.3.2
of the text.

� The really interesting thing is the idea; the proof is just about filling
in the details.

One thing to note: this construction is finite-size.
� This may not be obvious, but it is because the strings put on the stack
are always of finite length. This means we add a finite number of rules,
though potentially enormous. (How big?)

14 Lecture 14

Outline
1. Deterministic PDAs - M6 57-68

14.1 Deterministic PDAs

A PDA is non-deterministic by its nature. A deterministic PDA (DPDA)
is a PDA, with extra constraints to make its processing deterministic.

� Must be at most 1 transition from every state, and for every (input
letter, stack letter) pair.

� We can have ε-transitions, but each must be the only valid transition
for the state and stack symbol.

� If there is a transition from q0 with X on the top of the stack, that does
consume an input letter, then there are no ε-transitions for (q0, X).

More formally, for a given state q0:
� |δ(q0, a,X)| ≤ 1 always (a ∈ T , or a = ε),
� and if |δ(q0, a,X)| = 1, where a ∈ T , then |δ(q0, ε,X)| = 0.

Motivation: i.e. why do we care about DPDAs?
� A: Some CFLs are not accepted by any DPDA. I.e. the class of CFLs
is strictly larger the class of DCFLs (a DCFL is the language of some
DPDA).

82

Important difference versus DFAs:
� DPDAs can crash (if input symbols remain and no outgoing transition
of the right shape is available, just as in a PDA); DFAs cannot crash.

� Convention: For now, assume that our DPDAs accept by final state.
� I won’t spent time in class on the difference, for DPDAs, between final
state and empty stack. See the additional notes about M6 on the course
website if you are interested in this difference.

� A Possibly Surprising Fact About DPDA Acceptance: Accep-
tance by empty stack is different from acceptance by final state.

An example of a language accepted by a DPDA Ordinary PDA for
the language:

L = {x ∈ {a, b}∗ | na(x) > nb(x)}.
� (Words with more a’s than b’s.)

As we scan the word left-to-right, there will be more of one letter than the
other.

� Keep track of the number of letters that we have more of.
� (Example: read in aaaabab so far, then we should have three a’s on the
stack, since we have 5 a’s and 2 b’s.)

� Accept when there is still an a on the top of the stack at the end.
A nondeterministic PDA for L This gives a 2-state PDA like this:

// q0

a, Z0/aZ0

b, Z0/bZ0

a, b/ε
b, a/ε
a, a/aa
b, b/bb

UU

ε,a/a
// q1

� First two transitions in state q0: prefix is balanced
� Second two transitions in state q0: reducing imbalance
� Last two transitions in state q0: adding to imbalance
� Nondeterministic: ε-transition to state q1.

Can we make this PDA deterministic? The current PDA is nondeter-
ministic, because we have transitions when we pull an a off the stack that do
eat input letters, and that do not.

83

Can we make small changes to make it deterministic?
� As before, but now with states

– q0 for “balanced or an excess of b’s over a’s” (initial, not final) and
– q1 for “an excess of a’s over b’s” (final).

// q0

b, Z0/bZ0

a, b/ε
b, b/bb

UU
a,Z0/Z0

// q1

a, Z0/aZ0

b, a/ε
a, a/aa

UU

b,Z0/Z0

xx

This is a DPDA:
� There are no ε-transitions.
� There is always at most one choice for what to do next.
� In fact, there is exactly one choice:

– There are two states.
– There are two alphabet symbols.
– By the shape of the machine, there are two possible top-of-stack

symbols possible in each of q0, q1.
– Thus there are 23 = 8 transitions possible, each of which is defined

in our picture.
But the stack still remembers the imbalance: we have just divided the tran-
sitions from before between the two states.
We jump from one state to the other when we switch from more a’s than b’s
to not, or the other way around.
Not all CFLs are accepted by DPDAs
Fact (not proved in the text):
There exist context-free languages that are not accepted by DPDAs.

� Nondeterminism specifically makes PDAs more powerful.
� (This is not true for either Turing machines or for finite automata.)

Two different ways to prove this:
� Directly.
� Indirectly (Module 7)

We will talk a little about the first, but rely on the second.

Theorem 14.1.1. Any regular language L is accepted by a DPDA.

84

Proof. The DPDA just ignores the stack (i.e. every transition pops Z0 and
re-pushes it), and simulates the DFA that accepts L, which exists by Kleene’s
Theorem 5.1.1.

An Example to show that DPDAs do not accept every CFL
We know that the language L = {x ∈ {a, b}∗|x is a palindrome} is a CFL,
and hence accepted by a PDA.
We can argue that it is not accepted by any DPDA.

� Why? There has to be a way to identify the palindrome’s middle.
� After reading the first 8 letters of the string aabaabaa, must both be
ready to accept, if that is the end of the string, and be ready to read
in more letters, in case it is just the first half of the string.

� In a DPDA, that is just not possible.
� Especially bad - we need to keep track of lots of other possibilities: the
8-letter string is the beginning of the 11-letter palindrome aabaabaabaa,
etc.

� We cannot keep track of all of these choices for the middle: only one
transition available at a time.

This can be made into a proof if we know how many states the DPDA is
claimed to have; try it.
DPDAs and ambiguity

Theorem 14.1.2. If P is a DPDA, accepting by empty stack, then N(P)
has an unambiguous grammar.

Proof. � Follow the grammar produced in the theorem that transformed
a PDA into a CFG.

� The only place of some concern is that transitions where δ(q, a,X)
included multiple symbols, (p, Y1Y2 · · ·Yn) turned into a pile of distinct
new rules in the grammar.

� However, since the PDA is deterministic, we can see that only one
derivation in the grammar will actually lead to the word that is ac-
cepted by the DPDA.

You can modify the proof to work for acceptance by final state, too. (That
is Theorem 6.21 in the text.)
Overall hierarchy of languages We now know that:

� All finite languages are regular.

85

� All regular languages can be accepted by a DPDA, so are DCFLs.
� There are non-regular DCFLs (we just saw that L = {x ∈ {a, b}∗ |
na(x) > nb(x)} is a DCFL - it is an exercise to prove that L is not
regular).

� DCFLs are all not inherently ambiguous (Theorem 14.1.2).
� There are languages that are not accepted by DPDAs that are not
inherently ambiguous (e.g. palindromes).

� Some CFLs that are not inherently ambiguous are not DCFLs (e.g.
palindromes).

� All CFLs are accepted by PDAs, and the languages accepted by PDAs
are exactly the CFLs.

15 Lecture 15

Outline
1. A Normal Form For CFGs - M7 1-19

15.1 A Normal Form For CFGs

Motivation: Introducing such a normal form will enable us (via Theorem
15.1.2) to develop a Pumping Lemma for CFLs.

Theorem 15.1.1. For any CFG, G, there is a CFG, G′, such that L(G) =
L(G′) (with the possible exception of ε ∈ L(G)), where all productions of the
grammar G′ are of one of the following two forms:

1. A → BC where A, B and C are variables, or
2. A → a, where A is a variable and a is a terminal.

Grammars having only these productions are in Chomsky Normal Form,
or CNF.

Theorem 15.1.2. Let G be a CNF grammar. Let w ∈ L(G) be arbitrary.
Then any derivation of w in G takes 2|w| − 1 steps.

Proof. The proof is by induction on |w|. We will prove the stronger result:

for any variable A in G, if A
∗⇒ w, then the derivation must be of length

2|w| − 1 steps. This is sufficient because we may then take A = S.
� A CNF grammar cannot make ε, so the base case is |w| = 1.
� Base (|w| = 1):

86

– I claim that the first (and only) step in the derivation is A → a
(w = a, for some terminal a).

– There are no nullable variables, so if we instead started with a
rule of form A → BC, we would have to produce ≥ 2 terminals
in the end.

– So the only derivation of a 1-letter word takes 1 step.
– Since 1 = 2(1)− 1, therefore the base case holds.

� Induction (|w| > 1):

– The induction hypothesis is that for all words x satisfying A
∗⇒ x

and |x| < |w|, the derivation of x takes 2|x| − 1 steps.
– As we are not in the base case, the first step in the derivation of

w must be of the form A → BC.
– Then we can write w = wBwC , where B

∗⇒ wB, C
∗⇒ wC , |wB| <

|w| and |wC | < |w| as there are no nullable variables.
– By the induction hypothesis, the derivations for wB and wC are

of lengths 2|wB| − 1 and 2|wC | − 1, respectively.
– So the overall derivation, first using the A → BC rule, and then

the derivations for wB and for wC , takes 1+(2|wB|−1)+(2|wC |−
1) = 2(|wB|+ |wC |︸ ︷︷ ︸

=|w|

)− 1 = 2|w| − 1 steps.

Outline of the proof of Theorem 15.1.1 We need to replace many kinds
of now-forbidden rules:

1. A → ε
2. A → B
3. A → BCD (or > 3 variables in the RHS)
4. (a) A → Bc

(b) A → bc
Some of these simplifications are easier than others; none is especially hard.

1. Removing ε rules

Defintion 15.1.3. A variable A in a grammar G is nullable if A
∗⇒
G

ε.

If A is nullable, and there is a rule in the grammar B → AC, we add
a rule B → C to the grammar, and the language of the grammar will
not change.

� Previous derivation: B ⇒ AC
∗⇒ C · · ·

87

� New derivation B ⇒ C · · ·
We can do this for any nullable variable.

� The only word lost is ε, in the case where S is nullable.

Lemma 15.1.4. To identify nullable variables, apply this test:
(a) If there exists a rule A → ε, then A is nullable.
(b) If there exists a rule A → B1B2 · · ·Bm, and all Bi are nullable,

then A is nullable.
(c) No other variables are nullable.

Remark: We lose no generality by assuming that all the Bis are vari-
ables: If any Bi is a terminal, then the derivation cannot produce ε
from A.

Proof. First, suppose that the test discovers the variable A. Then the
shape of the test provides an explicit derivation A

∗⇒ ε, which witnesses
that A is nullable.
Now we need to show that every nullable variable A is discovered by this

test. Suppose that there is a k-step derivation A
k⇒ ε. The argument

is by induction on k, the length of the derivation.
� Base case (k = 1): Then there is a rule A → ε, and so the above
test discovers that A is nullable.

� Induction case (k > 1): The induction hypothesis is that for any

strictly shorter derivation B
∗⇒ ε, the test discovers that B is

nullable.
– The first step in the derivation of ε from A is A ⇒ B1 · · ·Bm,

where all the derivations Bi
∗⇒ ε have strictly fewer than

k steps. (No terminals can occur in the first step, as the
derivation ends in the empty word.)

– So by the induction hypothesis, the test discovers the Bis are
all nullable, and hence that A is nullable also.

We now must add new rules to the grammar corresponding to the
nullable variables.

� Suppose A → aBcD, with B and D nullable.
� Add new rules: A → acD, A → aBc, and A → ac to the grammar,
corresponding to the cases where B generates ε, where D does,
and where both do.

88

In general: from a rule with m nullable variables on the right hand
side, add 2m − 1 new rules, removing each possible subset of the list of
nullable variables. (There are 2m ways of including / excluding the m
nullable variables, and we already have the original rule in which all m
of them are included.)
Then, remove null productions A → ε from the grammar.

Theorem 15.1.5. Let G1 be the grammar constructed in this way from
the original grammar G. Then either L(G1) = L(G) or L(G1)∪ {ε} =
L(G).

� We will not show both directions of the proof (See Theorem 7.9
in the text).

� Here is the proof that if w ∈ L(G) and w ̸= ε, then w ∈ L(G1)
(i.e. a proof that L(G) \ {ε} ⊆ L(G′)).

� We will show more generally that, for any variable A, if A
∗⇒
G

w,

then A
∗⇒
G1

w.

� This is sufficient because we may then take A = S.
� The proof is by induction on k, the number of steps in the deriva-

tion A
k⇒
G

w.

� Base (k = 1):
– Then A → w is a production in G.
– Since w ̸= ε, therefore A → w is a production in G1 also.
– Therefore we have A

∗⇒
G1

w, as required.

� Induction (k > 1): Suppose that we have a k-step derivation A
k⇒
G

w, for k > 1.

– The induction hypothesis is that for all derivations B
ℓ⇒
G

x

with ℓ < k, we have B
∗⇒
G1

x.

– The first step in the derivation of w in G is A ⇒ B1B2 · · ·Bm,
where each Bi is a variable or a terminal.

– At least one variable remains after the first step, as we are
not in the base case.

– Write w = w1w2 · · ·wm, where Bi
∗⇒
G

wi for all i. (If Bi is a

terminal, say Bi = wi, then Bi
∗⇒
G

wi trivially.)

89

– Some of the wi may be ε, but not all, as w ̸= ε. Let C1, . . . , Cn

be the Bi that correspond to the non-ε subwords of w.
– Since the other Bis are nullable, by construction there exists

a derivation in G1 that starts with A ⇒ C1 · · ·Cn.
– Each Ci yields its corresponding wi in G, in fewer than k

steps.
– So, by induction, Ci

∗⇒
G1

wi, for all i. Then derive w in G1 via

A ⇒
G1

C1 · · ·Cn
∗⇒
G1

w1C2 · · ·Cn
∗⇒
G1

· · · ∗⇒
G1

w1 · · ·wn = w.

2. One-variable transformations

Defintion 15.1.6. A unit production is a production of the form
S → A, with only one variable on the right hand side.

We want to get rid of unit productions. Why?
� One reason: avoid cycles like S ⇒ A ⇒ B ⇒ S ⇒ · · · .

Easy:
� Basic idea: find all of the variables we can get to from a given
variable.

� If S
∗⇒ A, then add all of A’s productions directly to S’s produc-

tions.

Defintion 15.1.7. Variables (A,B) are a unit pair if A
∗⇒ B.

Theorem 15.1.8. We can find unit pairs by a simple recursive defini-
tion:
(a) (A,A) is a unit pair for any pair A.
(b) If (A,B) is a unit pair and there is a production B → C in our

grammar, where C is a variable, then (A,C) is a unit pair.
(c) No other pairs are unit pairs.

Easy proof (another induction, which we will not do; it is Theorem 7.11
in the text) that this method finds all unit pairs.

Removing unit productions If S
∗⇒ A in our grammar G, add the

productions for A to the productions for S.
Then, remove all unit productions.
Denote the new grammar by G1.

90

� Any production that previously used the derivation in G start-
ing from S

∗⇒ A ⇒ B1B2 · · ·Bm can now use the rule S →
B1B2 · · ·Bm in the new grammar G1.

� This shows that L(G) ⊆ L(G1).
� Now, consider a derivation of a word w in L(G1).

– Suppose we use a rule S → B1B2 · · ·Bm in G1 for a variable
S that came from a rule A → B1B2 · · ·Bm in G, where (S,A)
is a unit pair in G.

– Take derivation S
∗⇒
G

A ⇒ B1B2 · · ·Bm.

– Then the rest of derivation follows; any word we can derive
in G1, we can also derive in G.

� This shows that L(G1) ⊆ L(G).
� Therefore we have L(G1) = L(G).

3. Remaining bad kinds of rules For A → B1B2 · · ·Bm, where m > 2,
create a cascading sequence of rules:

� Only two symbols on right hand side for each rule.
� If we take the first rule for A, then we will produce (eventually)
all of B1B2 · · ·Bm.

This is not hard. Create m− 2 new variables C1, . . . , Cm−2, and these
rules:

A → B1C1

C1 → B2C2

C2 → B3C3

...

Cm−2 → Bm−1Bm

The new derivation is: A ⇒ B1C1 ⇒ B1B2C2
∗⇒ B1B2 · · ·Bm .

If some of the Bi are terminals, then some of the rules we have just
added are still are not allowed in a CNF grammar.
We will correct this in the next (and last) step.

4. The last step In Chomsky Normal Form, a grammar has two kinds
of rules:

� A → BC, for variables A,B and C
� A → a, for variables A and terminals a

If we start with an arbitrary grammar, and we:
� Remove ε-productions

91

� Remove unit productions
� Remove long productions

then the only possible remaining obstacle to being in CNF is that we
might still have rules of the form A → bc or A → Bc, with one terminal
on the right hand side of the arrow, but two symbols.
The last step, finished This is easy:

� For a rule of the form A → Bc:
– Add the variable: Xc.
– Add the productions:

* A → BXc

* Xc → c
– Then remove A → Bc.

� For a rule of the form A → bc:
– Add two new variables:

* Xb, and
* Xc.

– Add three new productions:
* A → XbXc,
* Xb → b, and
* Xc → c.

– Then remove A → bc.
Throughout, we must make certain that the new variable names added
are not duplicates of any existing variable names. Then since the new
variables are only used in these derivations, so they do not change the
language of the grammar.
The new grammar fits the desired framework.

Chomsky Normal Form algorithm From a general CFG:
1. Remove ε-productions.

(a) Find nullable variables.
(b) Change rules using them
(c) Then remove all ε-productions.

2. Remove one-variable productions.
(a) Find unit pairs (A,B) for each variable A.
(b) Add B’s rules to A.
(c) Then remove one-variable productions

3. Remove long productions.
(a) Create cascading sequence of definitions.

4. Remove terminals from two-letter rules.

92

(a) Create a new variable for each terminal, and substitute it into the
rules

Example: Let
G : S → AB,A → ε|0, B → 1.

Note that L(G) = {1, 01}. Construct G′, in Chomsky Normal Form, such
that L(G′) = L(G).
Solution:

1. nullable variables A is nullable. Hence to construct G1 from G, we
(a) add S → B and
(b) remove A → ε.

G1 : S → AB|B,A → 0, B → 1.

2. unit pairs (S,B) is a unit pair. Thus we
(a) add S → 1 and
(b) remove S → B.

G2 : S → AB|1, A → 0, B → 1.

Observe, G2 is already in CNF.
3. long productions No changes: G3 = G2.
4. terminals in two-letter productions No changes: G′ = G4 = G3.

It is now clear that L(G′) = L(G) = {1, 01}.

16 Lecture 16

Outline
1. Pumping Lemma for CFLs - M7 20-37

16.1 Pumping Lemma for CFLs

Toward a pumping lemma for CFGs

Definition 16.1.1. The height of a parse tree is the number of edges in a
longest path from root to leaf.

93

Example: The height of

�� ��

�� �� ��

�� ��

is 3.
Remarks:

1. The parse tree for a CNF grammar is binary everywhere, except at the
bottom of a branch, where a variable becomes a terminal.

2. The parse tree can be rooted at any variable, A, of the grammar G.
Suppose we have a CNF grammar, G, with p variables.

� Given k leaves, the height of the tree is at least 1 + log2 k (Proof
coming soon).

Theorem 7.17: Suppose we have a parse tree according to a CNF grammar,
G, and suppose the yield of the tree is some word w. If the height of the tree
is ℓ, then |w| ≤ 2ℓ−1.

Proof. � The proof is by induction on ℓ.
� Base (ℓ = 1): (N.B. ℓ = 0 is not possible: a parse tree for a word must
at least turn its root variable into a terminal.)

– The tree looks like

A

��

a

i.e. only a root and a leaf.
– Therefore |w| = 1, and 1 = |w| ≤ 2ℓ−1 = 20 = 1 holds.

� Induction (ℓ > 1):
– The induction hypothesis is that any parse tree (for a word) of

height q < ℓ has yield of length at most 2q−1.

94

– As we are not in the base case, the tree must start with

A

�� ��

B C

The root of the tree must use a production of the form A → BC.
– The max heights of the subtrees rooted at each of B and C are

each ℓ− 1.
– Thus the induction hypothesis applies to the subtrees rooted at

B and C: these subtrees both have yields of lengths at most
2(ℓ−1)−1 = 2ℓ−2.

– The yield of the tree is the concatenation of the yields of these two
subtrees, thus its length is at most 2ℓ−2 + 2ℓ−2 = 2

(
2ℓ−2

)
= 2ℓ−1.

Theorem 7.17 implies that the height of a parse tree for a word of length k
is at least 1 + log2 k.

� By the Theorem we have k ≤ 2ℓ−1, where ℓ is the height of a parse tree.
� Then we must have log2 k ≤ ℓ− 1, or in other words log2 k + 1 ≤ ℓ.

Theorem 7.17 further implies that, for a word z ∈ L(G) with length at least
2p (where p is the number of variables in G), a parse tree for z has height at
least p+ 1.
Repeated variables on the parse tree Assuming G has p variables, any
parse tree of height ≥ p+ 1, must have a repeated variable (call it A) some-
where (by pigeonhole principle).
One derivation of the word z in G is of the form:

S
∗⇒ uAy

∗⇒ uvAxy
∗⇒ uvwxy = z.

95

S

u y

A

A

w

xv

Remarks:
1. In the above diagram, the dotted lines indicate derivations, of one or

more steps.
Pumping In G:

� 0 repetitions

S
∗⇒ uAy

∗⇒ uwy = uv0wx0y

� 1 repetition As above
� 2 repetitions

S
∗⇒ uAy

∗⇒ uvAxy
∗⇒ uvvAxxy

∗⇒ uv2wx2y

� i repetitions (any i ≥ 0)

S
∗⇒ uviwxiy

Making a pumping lemma
Important: A

∗⇒ vAx and A
∗⇒ w.

So A
∗⇒ vAx

∗⇒ vvAxx
∗⇒ viAxi ∗⇒ viwxi, for any choice of i ≥ 0!

This will give our pumping lemma for CFLs.
Note: it cannot be the case that vx = ε, as a non-trivial repetition of A
occurs, and unit productions A

∗⇒ A are not allowed in a CNF grammar.
Q & A

1. What does “non-trivial repetition of A” mean?
A: In the above parse tree, the two As are not the same node, i.e.
≥ 1 derivation steps (i.e. ≥ 1 levels om the height of the tree) must
separate the two As.

96

Last Trick: Choose a repeated variable A as close to the bottom of the
parse tree as possible.

� By assumption |z| ≥ 2p, so that a parse tree for z has height at least
p+ 1.

� There exists a terminal in z with a path of length at least p+ 1 above
it.

� By pigeonhole principle, there is a (non-trivially) repeated variable (say
A) in this path, no more than p+ 1 levels above the leaf.

� Then we have A
∗⇒ vAx and A

∗⇒ w, i.e.
– the yield of the subtree rooted at the lowest A is w, and
– the yield of the subtree rooted at the second lowest A is vwx.

� By construction the subtree rooted at the second lowest A has height
at most p+ 1.

� Applying Theorem 7.17: |vwx| ≤ 2(p+1)−1 = 2p.
� As the repetition of A is non-trivial, therefore v and x are not both ε
(unit productions A

∗⇒ A are not allowed in a CNF grammar).
CFL Pumping Lemma (First Version)
Lemma: Let G be a CFG in Chomsky Normal form, with p variables.

� Any word z ∈ L(G) of length at least 2p can be decomposed as z =
uvwxy, where

� |vwx| ≤ 2p,
� v and x are not both ε, and
� and for all nonnegative i, uviwxiy ∈ L(G).

As with the pumping lemma for regular languages, we can remove the de-
pendency on a specific choice of CFG for the CFL, since all CFLs have a
CNF grammar.
Pumping Lemma for CFLs (the way we will use it)

Pumping Lemma for CFLs 16.1.2. Let L be a language. Suppose that
for any n > 0, there exists a word z ∈ L with |z| ≥ n such that:

� for any decomposition z = uvwxy, where |vwx| ≤ n and |vx| > 0, and
� there exists an i ≥ 0 such that that uviwxiy /∈ L.

Then L is not context free.

How To Use The CFL Pumping Lemma To Prove A Language L
Is Not Context-Free

� For an arbitrary n > 0, find a word z ∈ L, at least n letters long.
� Look at all decompositions z = uvwxy, with |vwx| ≤ n, vx ̸= ε.

97

� Say something useful about the decompositions.
� For each decomposition, find an i such that uviwxiy is not in L.
� Then the language L is not context free.

Examples:
1. L = {aibici | i ≥ 0}

I claim that the language L = {aibici | i ≥ 0} is not context-free.
� Let n > 0 be arbitrary.
Let z = anbncn. Clearly z ∈ L.

� Consider decompositions z = uvwxy with |vwx| ≤ n and vx ̸= ε.
� Say something useful about all such decompositions.

– All such decompositions have one or two types of letters in
vwx, but not all 3.

– (Why? The smallest consecutive substring with all 3 symbols
is abnc; it has length n+ 2.)

– In particular, vx omits one or two letters of the set {a, b, c}.
� For each decomposition, find an i such that uviwxiy is not in L.

– Consider uwy (i.e. take i = 0). Observe that uwy does not
have the same number of a’s, b’s and c’s, since one of these
letters is not in vx, and at least one is!

– Hence, uwy = uv0wx0y is not in L. (Neither is uvvwxxy).
We have shown that z cannot be pumped, and hence, L is not context
free.

2. Consider L = {aibjck | i < j, i < k}.
� Let n > 0 be arbitrary.
� Long word: z = anbn+1cn+1 ∈ L.
� Consider decompositions z = uvwxy with |vwx| ≤ n and vx ̸= ε.
In all of them, vx has either no a’s, or has a’s but no c’s.
– Case 1: No a’s.

Then uwy has fewer b’s or fewer c’s than z, but there are not
fewer a’s.
So uwy does not have fewer a’s than both b’s and c’s, and
therefore uwy is not in L.

– Case 2: a’s, but no c’s.
uvvwxxy has as at least as many a’s as c’s, so uvvwxxy is
not in L.

� So no decomposition of our long word z = anbn+1cn+1 can be
pumped.

And, thus, L is not context free.

98

3. Somewhat surprising, maybe:
L = {ss | s ∈ {a, b}∗}.
L includes words like aa or abbabb or ε or abaaba.

� For a given n > 0, find a long word. We will use z = anbnanbn.
(This choice might not be so obvious.)

� Decompose into z = uvwxy, with |vwx| ≤ n and vx ̸= ε. Then
uwy must have at least one a or one b removed from one of the
two copies of the identical string.

� But when we remove vx from uvwxy to form uwy, and lose a letter
from the copied word, we cannot lose the corresponding letter on
the other side; it is too far away.

� Therefore uwy /∈ L.
� So L is not context-free.

(See Example 7.21 of the text for all the gory details.)
4. A bit surprising

The very similar-looking L = {ssR | s ∈ {a, b}∗}, of even-length palin-
dromes, is context free, with this grammar:

� S → aSa | bSb | ε
However the previous example is still not context-free; we cannot keep
all the information available whenever it is needed. (PDAs, which only
recognize CFLs, have trouble with doing this.)

17 Lecture 17

Outline
1. Closure Rules for CFLs - M7 38-45
2. Quick Review of Decidability/Undecidability - CS 245
3. Decision Problems for CFLs - M7 46-50

17.1 Closure Rules for CFLs

CFLs are:
1. Closed under union, concatenation, Kleene star and reversal.
2. Not closed under intersection or complementation.

The easy ones
1. Union:

� Grammar G1 : S1 → · · ·

99

� Grammar G2 : S2 → · · · (with all different variable names)
� Construct: G : S → S1|S2 · · ·

2. Concatenation:
� Grammar G1 : S1 → · · ·
� Grammar G2 : S2 → · · · (with all different variables)
� Construct: G : S → S1S2 · · ·

3. Kleene star:
� Grammar G1 : S1 → · · ·
� Construct: G : S → ε|S1S

4. Reversal Reversal is not hard, either.
� Given a grammar G, construct a new grammar G′, by reversing
the outputs of all of the productions in G.

� For example, if G has a production S → XY Z, then add the rule
S → ZY X to G′.

� (If the grammar is in CNF, this works especially easily.)
� Now for a given derivation of a word w ∈ L(G), apply the corre-
sponding rules in G′ to generate wR ∈ L(G′).

� Then by construction, L(G′) = L(G)R.
� Then since L(G)R is the language of a context-free grammar,
therefore L(G)R is a context-free language.

5. Intersection We have already seen a language that shows that the
intersection of two CFLs is not always a CFL.
L = {aibici | i ≥ 0} (we saw that this language is not context-free).

� L = L1 ∩ L2, where:
– L1 = {aibicj | i, j ≥ 0}.
– L2 = {aibjcj | i, j ≥ 0}.

� L1 and L2 are each the concatenation of two context-free lan-
guages, so context free.

� In detail, define
– L11 = {aibi | i ≥ 0} (a CFL, with grammar G : S → aSb|ε),

and
– L12 = {cj | j ≥ 0} = L(c∗) (regular, and thus a CFL).
– Then L1 = L11L12.
– And L21 = {ai | i ≥ 0} = L(a∗) (regular, and thus a CFL).
– L22 = {bjcj | j ≥ 0} (a CFL, with grammar G : S → bSc|ε),

and
– Then L2 = L21L22.

Therefore, the class of context-free languages is not closed under in-

100

tersection!
6. Intersection of a CFL with a regular language

If L1 is context free and L2 is regular, then L1 ∩ L2 is context free.
� Suppose that a PDA M accepts L1 by final state, and that a DFA
D accepts L2.

� Let R be the states of M , and FM ⊆ R be the accept states.
� Let S be the states of D, and FD ⊆ S be the accept states.
� Define a PDA, P , which accepts by final state, with

– States Q = R× S,
– Accept states F = FM × FD,
– and transition function δ, defined from the transition func-

tions δM for M and δD for D (ignoring stack manipulations
for the moment):

δ(a, (r, s)) =

{
{(δM(ε, r), s)} if a = ε
{(δM(a, r), δD(a, s))} if a ̸= ε

– Manipulate the stack in P exactly as it was manipulated in
M .

� Then P is a PDA, and from construction, we have that
– P accepts w
– if and only if M accepts w and D accepts w
– if and only if w ∈ L1 ∩ L2, so that L1 ∩ L2 is a CFL.

Note, this construction will not work for intersection of two arbitrary
CFLs: both PDAs would need editing access to the one stack.

7. Complementation
The following example will show that the class of context-free lan-
guages is not closed under taking complements. Let

L = {aibici | i ≥ 0}
L1 = {aibjck | i ̸= j or k ̸= j}

� Then L1 is context-free, as it is the union of the four CFLs:
i. L11 = {aibjck | i < j} = {aibj | i < j}{ck | k ≥ 0},
ii. L12 = {aibjck | i > j} = {aibj | i > j}{ck | k ≥ 0},
iii. L13 = {aibjck | j < k} = {ai | i ≥ 0}{bjck | j < k}, and
iv. L14 = {aibjck | j > k} = {ai | i ≥ 0}{bjck | j > k}.

� For example, a grammar for {aibj | i < j} is G : S → b|Sb|aSb.

101

Now, consider L2 = L(a∗b∗c∗)′. That is, L2 is the set of words that are
not of the form aibjck, for any choice of i, j, k.

� Then L2 is regular, as it is the complement of a regular language.
(Exercise: What is a regular expression for L2?)

� Then L2 is a CFL.
Then L3 = L1∪L2 is context-free, as it is the union of two context-free
languages.
Note that words in L3 are:

� of the form aibjck for some i, j, k, but not having i = j = k, or
� not of the form aibjck, for any choice of i, j, k.

Now, consider L′
3. I claim that

L′
3 = {aibici | i ≥ 0}.

We have

L′
3 = (L1 ∪ L2)

′

=︸︷︷︸
DeMorgan

L′
1 ∩ L′

2.

� L′
2 = (L(a∗b∗c∗)′)′ = L(a∗b∗c∗) is the set of words that can be

written in the form aibjck, for some choice of i, j, k,
� and L′

1 is the set of such words for which i = j = k,
� and therefore our description of L′

3 is correct.
� We have already seen that L′

3 is not context free.
L3 is context free, and its complement is not context-free.
Therefore the class of context-free languages is not closed under com-
plementation.

Contrasts with DCFLs
DCFLs are closed under complementation.

� Proving this is non-trivial.
� See the additional notes for Module 7.

Simple proof that there are context-free languages that are not DCFLs: we
just saw one. L is context-free, while L′ is not context-free (and hence not a
DCFL)

17.2 Quick Review of Decidability/Undecidability

Definition 17.2.1. A decision problem is a problem which calls for an
answer of either yes or no, on some input.

102

Examples:
1. Given a program P and input I, will P halt when run with input I?

(the Halting Problem)

Definition 17.2.2. A decision problem is decidable if there exists an algo-
rithm that, given an input to the problem,

� outputs yes (or true) if the input has answer yes, and
� outputs no (or false) if the input has answer no.

A decision problem is undecidable if it is not decidable.

Remarks:
1. It is important to point out that the algorithm must always complete

after finitely many steps.
2. To prove that a decision problem is decidable, write down an algo-

rithm to decide it.
3. A decision problem may be undecidable, and yet have particular choices

of input for which the correct yes/no answer can be determined. To
say that a decision problem is undecidable is to say that no algorithm
exists to give the correct yes/no answer for every input.

4. It is proved in CS 245 that the Halting Problem is undecidable.
We will re-prove that fact soon, using Turing Machines.

17.3 Decision Problems for CFLs

Decision Problems for CFLs
Lots of the analogs to the problems we saw in Module 4 for regular languages
are not solvable by computers.
What we can do: membership

1. Given a CFG, G, does L(G) contain the word w?
(a) If w = ε, then test the start variable, S, for nullability. If S is

nullable, then yes; else no.
(b) Otherwise, w ̸= ε. The rest of the algorithm is to handle the case

w ̸= ε.
(c) Turn the provided CFG into CNF.
(d) Try all derivations of length 2|w| − 1.
(e) If any of them derives w, then yes; else no.

2. Given a PDA, P , does N(P) contain the word w?
(a) Turn P into a CFG (algorithm in slides).

103

(b) Use algorithm #1 on the constructed CFG. (Remark: Algorithm
#2 is an example of a reduction. We will say more about reduc-
tions in M9.)

(c) It is tempting to just run the PDA on w. However, it might run
forever, providing no answer.

3. Given a CFG, is its language empty?
(a) First turn the CFG, G, it into CNF.
(b) Apply:

Theorem 17.3.1. If a CFG in CNF, G, having p variables gen-
erates any words, then it must generate a word with < 2p letters.

Proof. i. Assume L(G) ̸= ∅.
ii. Let z0 ∈ L(G) be arbitrary.
iii. If |z0| < 2p, then we are finished.
iv. Otherwise, |z0| ≥ 2p and by the proof of the Pumping Lemma,

we can decompose z0 = u0v0w0x0y0, with |v0w0x0| ≤ 2p,
v0x0 ̸= ε and u0w0y0 ∈ L(G).

v. Let z1 = u0w0y0.
vi. If |z1| < 2p, then we are finished.
vii. Otherwise, |z1| ≥ 2p and z1 ∈ L(G) and so by the proof of the

Pumping Lemma, we can decompose z1 = u1v1w1x1y1, with
|v1w1x1| ≤ 2p, v1x1 ̸= ε and u1w1y1 ∈ L(G). Let z2 = u1w1y1.

viii. Continuing in this way we obtain a sequence of words in L(G)
having strictly decreasing lengths: z0, z1, z2,

ix. As z0 has finite length, after at most |z0| − 2p + 1 steps, we
will obtain a word in L(G) with length < 2p.

(c) Enumerate all of them, and test membership for each, using al-
gorithm #1.

(d) If one word is in L(G) then yes; else no.
Undecidable problems Other sensible problems are undecidable:

1. Given two CFGs, do their languages have any words in common?
2. Given two CFGs, are their languages equal?
3. Is the language of a CFG equal to Σ∗?
4. Given two CFGs, is the language of one a subset of the other’s?
5. Is a given CFG ambiguous? (Note: this is about the grammar, not

the language.)
6. Is a given CFL inherently ambiguous?

104

18 Lecture 18

Outline
1. Limits of Computation - M8 1-8
2. Introduction to Turing Machines - M8 9-12
3. Formal Definition of a Turing Machine - M8 13-27

18.1 Limits of Computation

1. In CS 245, you saw that the Halting Problem is undecidable.
2. In the slides, there are examples of

(a) Two programs about which we can ask: does the program halt
and return the output 1?, and for which
i. one program clearly does while
ii. the second program runs forever.

(b) a variation on the proof from CS 245 about the Halting Problem.
Moral: Not every decision problem can be answered by a computer (i.e. is
decidable).

18.2 Introduction to Turing machines

1. We have been studying simple models of computation.
2. We need a model of computation which is more similar to our under-

standing of how people (and computers) work.
3. In particular, we need to be able to access memory more robustly than

we can in a PDA.
How do computers compute?
A simpler question: how do people compute?

1. We pull information from long-term memory into short term.
2. We work with the contents of short-term memory.
3. When finished, we write results to the long-term memory,
4. Repeat the above steps, until we have solved our problem.

As an automaton model
Turing’s model of a computing machine has two parts:

1. A finite automaton
(a) has short-term memory, in its states
(b) tells us how how to process the short-term memory, plus how to

read from, and what to write to, long-term memory

105

2. A one-dimensional tape, representing long-term memory
(a) A TM does not access memory as a real computer does, but they

are equivalent in terms of computing power.
Church/Turing thesis: Anything we can do with a Turing machine we
can do with any other reasonable computing model.
“If an algorithm exists, then a TM can be built to carry out that algorithm.”
Turing machine = Finite automaton plus memory tape

. . . BBB01010001110101111BBB. . .

tapehead

� Long-term memory is only accessed at the tape head: we can only see
one letter of memory at a time.

1 step in the TM:
� Given the current state in the FA, and the letter at the tape head

– Move to a different state
– Maybe change the letter at the tape head (or leave it alone)
– Move tape head one cell left or right

18.3 Formal Definition of a Turing Machine

Formalization
To describe this, we need a 7-tuple:

1. Finite automaton control:
(a) Σ: the alphabet for candidate words
(b) Q: finite set of states
(c) F : the subset of final states
(d) q0: initial state

2. Tape control:
(a) Γ, the tape alphabet (Σ ⊆ Γ, since we start with w ∈ Σ∗ on the

tape)
(b) B, the blank symbol for the tape

i. Note: B ∈ Γ, but B /∈ Σ.

106

3. And a transition function:
(a) δ: transition function. δ : Q× Γ → Q× Γ× {L,R}

i. If δ(q, a) = (p, b, L) (for a, b ∈ Γ), then the machine
A. switches states from q to p,
B. overwrite a with b on the tape, and
C. moves the tape head to the left.

ii. This δ need not be a full function: if there is no value of
δ(q, a), the machine crashes in state q upon seeing the tape
symbol a.

The machine halts when we enter a final state, or crash.
A TM can also run forever.
More specifics about TMs

� The machine’s tape is infinite in both directions.
� Our convention: We launch the TM with input w ∈ Σ∗ written on the
tape (|w| is always finite):

– |w| consecutive cells of the tape are filled with w’s symbols,
– the tape head points to w1, the first symbol of w, and
– all of the other cells of the tape are filled Bs.

Remember: the input could be of arbitrary size, but is always a finite string.

19 Lecture 19

Outline
1. Formal Definition of a Turing Machine - M8 13-27

19.1 Formal Definition of a Turing Machine

Instantaneous descriptions for Turing machines
Transitions in a TM After some number of steps of TM computation:

1. Current state, q.
2. The contents of the tape, X1X2 · · ·Xk (each Xi ∈ Γ; the rest of the

tape is filled with Bs, infinitely many in both directions).
3. Tape head position: denote by underlining the current tape head po-

sition; the text notation is slightly different here - use our notation,
because it is better.

4. If we want the tape head pointing to the first symbol, w1, of a sequence
of symbols, w = w1w2 · · ·wn, we will underline w, to indicate that the

107

tape head points to the first symbol in it (e.g. if w = “carrot′′, then
BwB means BcarrotB).

At the beginning of the execution in the TM, the instantaneous de-
scription is written as (q0, w1w2 · · ·wn), or simply as (q0, w) (only write B
when needed).
How to transition in the TM (where |a| = |b| = 1)
If the current instantaneous description of the machine is (q, xay):

� If δ(q, a) = (p, b, R), then the new instantaneous description is (p, xby).
Shorthand: (q, xay) ⊢ (p, xby).

q
a/b,R
// p

� If δ(q, a) = (p, b, L), then the new instantaneous description of the ma-
chine is (p, x1 · · ·xk−1xkby), and we write (q, xay) ⊢ (p, x1 · · ·xk−1xkby).

q
a/b,L
// p

Remarks:
1. A basic TM is deterministic (at most 1 transition for a state, tape-

symbol pair; no ε-transitions)
2. δ need not be defined for every state, tape-symbol pair. A TM will

crash if no applicable transition is defined.
Special cases: (where |a| = |b| = 1)

1. Tape head at leftmost non-B character then move L: the tape head
moves to a new B character, B: (q, ay) ⊢ (p,Bby), if δ(q, a) = (p, b, L).

2. Tape head at rightmost non-B character then move R: similarly, the
tape head moves to a new B character: (q, xa) ⊢ (p, xbB), if δ(q, a) =
(p, b, R).

3. Erasing the last letter on the tape. For example, if δ(q, b) = (p,B, L),
then (q, xab) ⊢ (p, xa). (Again, only write B when needed.)

Multi-Step Computations: Write (q, xay)
∗
⊢
M

(p, vbz) to indicate that we

can move from the first configuration to the second, in some finite number
of steps.

� To keep the notation uncluttered, we only indicate the machine M
when necessary.

Acceptance in the TM
Definition: The Turing machine M accepts w = w1w2 · · ·wn ∈ Σ∗ if and

108

only if (q0, w1w2 · · ·wn)
∗
⊢
M

(p, xay) for any final state p ∈ F and any string

xay ∈ Γ∗.
Remarks:

1. The tape need not be empty, and
2. the input need not have been fully examined.

Now we can define the language of a Turing machine:
� The language, denoted L(M) of the machine M , is the set of words
w ∈ Σ∗ which M accepts.

Definitions:
1. A language L is recursively enumerable if it is the language of some

TM.
2. A language L is recursive (decidable) if it is the language of some

TM which halts on every input.
How a TM can fail to accept some input word, w
How does a TM reject an input?

� If the TM is in a non-final state q, pointing at tape symbol a, and
δ(q, a) is not defined, then it crashes and rejects the word.

� This is called “Halt and reject”.
� (Later, once we move beyond implementation details and into describ-
ing algorithms for Turing machines, we will simply make our algorithms
explicitly crash when necessary.)

A Turing machine can also fail to accept an input word w by running forever
while processing it.

� This is possible with a PDA, too, or even with an ε-NFA.
Running Forever I.e. the TM goes into an infinite loop, never entering a
final state. Running forever will be a possibility which we will need to handle
carefully from now until the end of the course.
Halting means M either accepts w or crashes on w, we say that M halts
on input w.
Not halting means M runs forever on w.
An example: palindromes over Σ = {0, 1}
Let’s construct our first TM, to accept the language of palindromes, L = {x |
x = xR}.
Draw like a DFA, but with a new character for the tape and the arrow for
the tape direction after a slash. (Or use L and R instead)

109

B/B →

B/B →

B/B →B/B ←

B/B ←

B/B →
0/B ←

1/B ←
1/B →

0/B →
0/0←
1/1←

0/0 →
1/1 →

0/0 →
1/1 →

even palindromes

odd palindromes

odd palindromes

q0

q1 q2

q3 q4

q5

q6

Explanation of the Diagram
1. Top Branch (q1, q2, q5): Match a 0 at the start with a 0 at the end;

delete both.
2. Bottom Branch (q3, q4, q5): Match a 1 at the start with a 1 at the end;

delete both.
3. Odd Length Palindromes:

(a) If the last (middle) character is 0, then delete it as we move q0 →
q1. Then the tape is all B, so go q2 → q6 and accept.

(b) If the last (middle) character is 1, then delete it as we move q0 →
q3. Then the tape is all B, so go q4 → q6 and accept.

4. Even Length Palindromes: We arrive back at q0 after the last characters
are deleted. Then the tape is all B, so go to q6 and accept.

5. Rejecting All Non-Palindromes:
(a) Start with 0 on the left; crash when we read a 1 in q2.
(b) Start with 1 on the left; crash when we read a 0 in q4.

An accepting computation
Consider the palindrome w = 010.

110

(q0, 010) ⊢ (q1, 10)

⊢ (q1, 10)

⊢ (q1, 10B)

⊢ (q2, 10)

⊢ (q5, 1)

⊢ (q5, B1)

⊢ (q0, 1)

⊢ (q3, B)

⊢ (q4, B)

⊢ (q6, B)

The machine accepts, having deleted the whole word.
A word not in L
Consider the non-palindrome w = 0100.

(q0, 0100) ⊢ (q1, 100)

⊢ (q1, 100)

⊢ (q1, 100)

⊢ (q1, 100B)

⊢ (q2, 100)

⊢ (q5, 10)

⊢ (q5, 10)

⊢ (q5, B10)

⊢ (q0, 10)

⊢ (q3, 0)

⊢ (q3, 0B)

⊢ (q4, 0)

...and the machine crashes, rejecting w = 0100.
TMs can also accept non-context-free languages, like

L = {s!s | s ∈ {a, b}∗} .

111

We are not going to draw the machine that accepts L. (See §8.3.2 in the
text.)
Idea: match letters from one copy of s with those in the other copy.

1. First, we ensure that there is exactly one ! character in the word.
2. Then, we match the first “remaining” character on each side of the !

character, and remove them.
3. Until there is nothing left.

20 Lecture 20

Outline
1. Programming Turing machines - M8 28-30
2. Computable functions - M8 31-37
3. Using Subroutines - M8 38-46

20.1 Programming Turing machines

1. Store a small (finite) amount of information in the state (e.g. in the
palindrome TM, we had parallel state paths for reading 0 or 1 first from
the tape).

2. Tag letters of the word with more bits of information, expanding the
alphabet as needed.

3. Use subroutines where needed.
Remarks:

1. Our palindrome machine decides the palindrome language, since it ac-
cepts palindromes and explicitly crashes on all non-palindromes. Hence
the palindrome language is recursive.

2. If our palindrome machine instead ran forever on at least one non-
palindrome, it would only accept the language of palindromes.

3. If a Turing machine M accepts the language L, but does not decide L,
then this does not imply that L is not recursive.
(a) You may just have the wrong TM.
(b) It might be possible to choose an improved TM which accepts L

and halts on all inputs.

112

20.2 Computable functions

Idea: To construct a TM which computes a function, say y = f(x), for some
positive integers x and y:

1. Start with x on the tape, encoded as 1x.
2. Finish by entering a final state, with the convention that output y will

then be encoded on the tape as 1y.

Definition 20.2.1. A function f(x), such that there exists a Turing machine
to compute it as above, is called a computable function.

Remarks:
1. Rather than treating 1x as a word to be accepted or rejected, treat it

as input to a function to be computed.
2. Our TM must halt and accept for every legal input 1x, and put 1y

onto the tape as it does so.
3. Our assumption that we halt and accept for every input x ∈ Σ∗ was

very strong. We can weaken this assumption and still get something
useful.

4. Note that f need not be total: there could be words in Σ∗ for which
f is not defined. On those inputs, M may crash or run forever.

5. The function can have multiple arguments or be multi-valued.
6. Our first computable functions will be unary (i.e. they will be of

the form f : Γ∗ → Γ∗). But many natural functions (e.g. addition,
multiplication, expoentiation, etc. take two inputs, not just one.

7. If f : Γ∗ × Γ∗ → Γ∗, then we can separate the two arguments on the
tape using B.

Examples:
1. f(x) = x+ 1

A TM to compute this f , will need to add another 1 at the end of the
provided string of 1s on input.

2. f(x) = 2x
A possible algorithm:
(a) Mark the end of input, say with !.
(b) For each 1 preceeding !

i. Delete it, then,
ii. Write two new 1s after the (output string) block of 1s following

!
iii. Repeat until a11 1s preceeding ! have been replaced with B.

113

(c) Delete !, move right to the first 1 of the output block.
(d) Halt and accept.

3. Consider the addition function: + : Z+ × Z+ → Z+, (x, y) 7→ x+ y.
� We encode the positive integer i on the tape as 1i.
� Then x+ y is the concatenation of the two arguments 1x and 1y,
namely 1x+y.

� This + is computable: we can certainly concatenate two strings
with a Turing machine.

Exercise: Construct a Turing machine that performs this computation.
Characteristic functions

� In set theory, the characteristic function of the subset X ⊆ S (for
some “universe” S) is the function:

χX : S → {0, 1}
s 7→

{
1 if s ∈ X
0 if s /∈ X

which indicates whether an arbitrary s ∈ S lies in X or not (like an
indicator function in STAT 230).

� Hence the characteristic function of the language L ⊆ Σ∗ is the
function:

χL : Σ∗ → {0, 1}
w 7→

{
1 if w ∈ L
0 if w /∈ L

� This function answers the question, “is w ∈ L?”
� Key Observation: membership in L is decidable if and only if χL is
computable, and total.

� If the Turing machine M computes χL:
– On any input x ∈ Σ∗, M always accepts.
– When M halts, either 1 or 0 is left on the input, with the tape

head pointing at that symbol.
� If we can compute χL, then membership in L is decidable

– Suppose M computes χL.
– Then we can build a machine M ′ to decide membership in L:

M
1/1, R

114

– On input x:
* Since M always accepts, M ′ always gets through the M mod-
ule.

* Then M ′ either
· accepts (if the tape head is pointing at a 1 when M ac-
cepts), so x ∈ L, or

· crashes (if the tape head is pointing at a 0 when M ac-
cepts).

– Then M ′ decides membership in L.
� The other direction (showing how to compute χL assuming membership
in L is decidable) is an exercise.

If f is computable (or respectively if χL is computable), then we say that f
(or respectively L) has an algorithm.

20.3 Using Subroutines

How to use subroutines (assuming a subroutine TM is created and ready to
use):

1. Set up the input for the subroutine.
2. Transition into the first state of the subroutine.
3. Wait until the subroutine halts.
4. Note that we must correctly handle the possibility that the subroutine

runs forever (every subroutine is a Turing machine after all).
5. If we call a subroutine that runs forever, then our calling TM also runs forever.

We can never do anything after the subroutine in this case. In our
example, we assumed that M always halts, temporarily avoiding the
issue.

We do not use subroutines in Turing machines to shorten the program code.
The motivation is to improve clarity, not brevity. We are highly interested
in the difference between what can be done in some finite number of steps
(possibly large but still finite) versus what cannot be done in any finite
number of steps.
Examples:

1. Inserting a Character
The specification of our subroutine for inserting the character a at the
current position of the tape head:

� (q0, yz)
∗
⊢ (qF , yaz), where qF is an accept state in the subroutine

115

machine and a ∈ Σ.
� Constraint: z does not have the blank character in it, so that we
know when we have read the entire string z and moved it one
character to the right.

We might use this subroutine if we want to insert a different character
into a string, by first inserting the character a, and then replacing the
a with that character.

2. Deleting a Character
Delete the character the tape head is pointing at:

� (q0, yaz)
∗
⊢ (qF , yz), where qF is again an accept state in the sub-

routine machine and a ∈ Σ.
� Again, constrain z to not contain any blank character.

Deletion machine

b/b, R

a/a, R

B/B, L a/B, L

b/B, L

a/a, L

b/a, L

a/b, L

b/b, L

q0
q1

q2

q3

q4

a/B, R

b/B, R

q5

B/a, R

B/b, R

q6 b/b, L

a/a, L

B/B, L

How it works

(a) In state q0, we delete the current tape head character and move
right.

(b) In state q1, we move to the right until we have read the entire
word on the input.

(c) Then, we remember the last letter, and put it into the position
where the second-to-last letter was, remembering that.

(d) In state q3, the previous symbol was a.
(e) In state q4, the previous symbol was b.
(f) Push the whole way to the beginning of the string, and copy in

116

the last character as we move to state q5.
(g) From state q5, move the tape head back to the correct position.
(h) Accept in q6.
Remark: If z were B, we would crash once we reach q2. So clarify the
specification to enforce |z| ≥ 1.
Exercise: Enhance the provided TM so that it won’t crash if z is B.
Example of Computation: processing abba

(q0, abba) ⊢ (q1, aBba)

⊢ (q1, aBba)

⊢ (q1, aBbaB)

⊢ (q2, aBba)

⊢ (q3, aBb)

⊢ (q4, aBa)

⊢ (q5, aba)

⊢ (q6, aba)

Storage in the state
Another trick, implicitly just used: augment a TM with a finite amount of
memory.
In our previous example, we could combine q2, q3 and q4 into a single state
by storing the previous symbol seen in the memory of M .

21 Lecture 21

Outline
1. Variations on a Turing machine - M8 47-69

(a) Multiple Tapes - M8 48-52
(b) Multiple Tape Heads - M8 53-55
(c) Non-Determinism - M8 56-68

21.1 Variations on a Turing machine

21.1.1 Multiple Tapes

In a multi-tape Turing machine, we have k > 0 tapes, each with its own
tape head.

117

1. instantaneous description:
(a) the state in the finite automaton,
(b) the contents of each of the k tapes, and
(c) the position of each of the k tape heads.

2. Transition function is of form: δ : Q× Γk → Q× Γk × {L,R}k.
3. Conventions:

(a) the input word is placed onto tape #1 (with tape head #1 pointing
to its leftmost character), and

(b) all other tapes start off filled with Bs (hence these tape heads
positions do not matter).

Q: Is a multi-tape machine more powerful than an ordinary TM?

Theorem 21.1.1. 1. If a language is decidable by a multi-tape Turing
machine, then it is decidable by a one-tape Turing machine.

2. If a language is accepted by a multi-tape Turing machine, then it is
accepted by a one-tape Turing machine.

Proof. We will focus on a language accepted by a 2-tape Turing machine,
M , and show it is also accepted by a 1-tape Turing machine, M ′. (If we can
collapse 2 into 1, then inductively we can collapse any k into 1.) First, some
housekeeping:

1. Suppose that M uses the tape alphabet Γ. (Recall that B ∈ Γ.)
2. Then let M ′’s tape alphabet be Γ× {B, ∗} × Γ× {B, ∗}.
3. I.e. each position of the single tape for M ′ is two symbols from Γ,

where each position is either tagged with a ∗ (to indicate where the
tape head points), or not.

4. We may think of the single tape for M ′ as having four “tracks”, to
remember these four pieces of information.

5. For example, part of the tape might look like

B 0 1 0 B
B * B B B
B 1 1 B B
B B * B B

Initial Setup: Prime tracks 1 and 2 of M ’s tape with the initial contents
of M ’s tape,
Simulate one transition in the multi-tape TM M , in M ′ (Endow M ′

with some finite amount of memory).

118

1. Store M ’s current state in M ′’s finite memory.
2. Locate the two tape heads in M , by searching from the left of M ′’s

tape, for the ∗ characters in the second and fourth positions of the
four-tuple that is a letter in the tape alphabet of M ′.

3. Store the two corresponding characters in M ′’s finite memory.
4. Using the known specification of M , determine the transition that M

will take for the state, and pair of input tape symbols.
5. M ′ changes state, then updates the tape contents plus tape head posi-

tions appropriately.
6. Mark the new tape head positions.
7. Rewind the tape and repeat.
8. Let the final states of M ′ be the same as those for M , so that M ′ will

accept exactly when M does.

Why multi-tape TMs are useful:
Example: Consider L = {w!w | w ∈ {0, 1}∗}.

1. We can create a one-tape TM to test membership in this language.
2. But it is easier to create a multi-tape TM.
3. See the details in the slides.

21.1.2 Multiple Tape Heads

1. We could have multiple tape heads on one tape.
2. Similarly to multiple tapes, we can simulate a multi-tape-head TM

using an ordinary TM. Moral: A multi-tape-head TM is no more
powerful than an ordinary TM.

3. See the details in the slides.
4. Other memory alterations

(a) 2-dimensional memory (tape head moves up, down, left or right),
(b) or even higher dimensions,
(c) or a multi-tape machine where we store an address in the first

tape that we can use to access the second tape: we can then model
something like random-access memory, instead of sequential.

Example: Create a two-tape Turing Machine to recognize palindromes over
{0, 1}.
Solution: We will use

1. underlining, e.g. a to indicate the position of the first tape head, and

119

2. overlining, e.g. a to indicate the position of the second tape head.
By convention we start with tape contents

B w1 w2 · · · wn B

where w = w1 · · ·wn. We have the following two cases, depending on the
parity of n.

1. n is odd: Write n = 2k+1, for some k. Then is clear that we can arrive
at the tape contents

B w1 w2 · · · w2k+1 B

and from here we can easily decide whether w is a palindrome or not
by matching symbols on the left and right until we reach the middle of
the word, and accept when the left tape head sees B. We won’t show
any additional details for this case.

2. n is even: Write n = 2k, for some k. Then is clear that we can arrive
at the tape contents

B w1 w2 · · · w2k B B

and from here we need to demonstrate how we can decide whether w is
a palindrome or not. We will still match symbols on the left and right
until we reach the middle of the word. But we will need to move both
tape heads to detect matched symbols, unlike in the previous case. The
following Turing machine will carry out the matching algorithm in this
case. We label each transition showing the actions at the two tape
heads explicitly.

q1

B,B/R;
0, B/R

// q2

0, B/R;
B,B/L

qq// q0

0, 0/L;
B,B/L

AA

1, 1/L;
B,B/L ��

B,B/R;
B,B/R

��

q5 q3
B,B/R;
1, B/R

// q4

1, B/R;
B,B/L

mm

120

Exercise: Show the sequence of instantaneous configurations of this
Turing machine while it processes:
(a) w = 0110
(b) w = 0100

21.1.3 Non-Determinism

A nondeterministic Turing machine can have multiple values for δ(q, a).
1. There can only be a finite number of entries in δ(q, a) (still no ε-

transitions).
2. We write (q, yx) ⊢ (p, wz) if one transition in δ(q, x) gets us to the

second configuration. We do NOT attempt to describe all threads
simultaneously.

3. The non-deterministic machine accepts input x if a valid computation
exists that brings us from the starting configuration to an accepting
configuration (i.e. accept iff at least one thread accepts).

4. It is not true that all threads must accept, or even halt.
5. A nondeterministic TM (NDTM) can only accept its language, not

decide it.
(a) What should it mean if one thread accepts while another crashes

or runs forever?
6. NDTMs also can not compute functions.

(a) What should it mean if two valid computations disagree about the
value of f(x)?

Example: See the slides for a sketch of a two-tape head nondeterministic
TM which accepts L = {ww | w ∈ {a, b}∗}.
How powerful is nondeterminism? If we have n steps in the computa-
tion, and 2 choices at each level, there could be 2n branches! Are nondeter-
ministic TMs more powerful?

� No.
� There is the possibility that they are faster (see the P vs. NP problem
in CS 341).

� But we only care about what they can do, not how quickly they do
it.

Theorem 21.1.2. If L is accepted by a nondeterministic Turing machine
M , then there exists a deterministic Turing machine M ′ that also accepts L.

Proof. See the slides.

121

Key Idea: For each n = 0, 1, 2, 3, 4, . . .: model all computations of n steps.
� if one computation accepts, then accept
� otherwise, increment n and repeat.

If one computation accepts, then we will eventually discover it. If not, then
we will run forever.

Remark: Your text (Theorem 8.11) gives a very interesting proof that uses
a queue, instead.
Also Useful: Slides 59-60 show that a TM with tape head moves {L, S,R}
(where S stands for “stay put”) is no more powerful than an ordinary Turing
machine, with only {L,R}.

22 Lecture 22

Outline
1. An Undecidable Language - M9 1-13
2. Other Undecidable Languages - M9 14-24

22.1 An Undecidable Language

Cantor proved S = [0, 1] ⊂ R is uncountable. See the proof in the slides.
It uses a diagonalization argument. So will we, soon.
Set Cardinality

1. We say that infinite sets S and T have equal cardinality if there
exists a bijection f : S → T .

2. Recall that a function f : S → T is a bijection if it is both injective
(“one-to-one”) and surjective (“onto”), i.e. f is a 1-1 map from S to
T .

3. In the case where S and T are both finite, then the definition of equal
cardinality agrees with our intuition about finite sets: the sets are of
equal cardinality iff they have the same number of elements.

4. However counter-intuitive things can happen in the infinite case: e.g.,
if
(a) S = {even integers}, and
(b) T = {all integers}, and
(c) f(x) = x

2
,

then f : S → T is a bijection.

122

5. S and T are of equal cardinality, even though our intuition might tell
us that S is “half” the size of T .

Countable Sets
1. A set S is countably infinite: S is of equal cardinality to Z (or to

any infinite subset of Z).
2. A set S is countable: S is finite our countably infinite.
3. A set S is uncountable if it is not countable. Remark: Uncountable

is bigger than countable.
Countable sets exist, e.g. Z, or { even integers }, etc. The positive integers
are also countable. Cantor’s proof that [0, 1] is uncountable was the first
rigourous proof that an uncountable set exists (upsetting to many, at the
time).
Applying Cantor’s Diagonalization to TMs
Idea: Produce a language which cannot be the language of any Turing Ma-
chine, i.e. it cannot be r.e..

1. We need to identify each Turing machine M (over the binary alphabet
{0, 1}) with a binary string. See the technique in the slides. Key
Ideas:
(a) Number every ingredient of M ’s specification.
(b) Define delimiters between a’s ingredients, such that the delimiters

do not overlap with a’s strings.
(c) Use a, b, to encode δ.

2. We encode a binary string to identify the TM, M ; treat it as a natural
number index for M . f(M) is the natural number that we produce as
above.

3. There can be multiple codes for f(M) (but only finitely many). E.g.
re-order the states.

4. The set of Turing machines (hence the set of r.e. languages)
is countable. We just built a bijection to a subset of Z.

5. There are uncountably many languages, even over a unary alphabet
(proof in slides).

6. So there must exist a lot of (uncountably many) non-r.e. languages.
But this does not tell us where to find them!

A language about Turing machines
Every Turing machine M has an identifier w = f(M).

1. Consider the language

LSA = {w | the Turing machine M represented by w accepts w}.

123

Think w = f(M), or its natural number equivalent. For M9, we can
adopt the convention that TMs read and write natural numbers. If you
prefer, use Σ = {0, 1}, and work with binary strings everywhere.

2. LSA is the language of ids for TMs that accept when given their own
ids as input.

3. SA indicates self-accepting.
4. It might seem weird to feed w into the machine identified by w. But

lots of programs process other programs! E.g. parsers, compilers, inter-
preters, profilers, etc. Recall: w = f(M) is just some natural number.

Fact: LSA is not recursive, but we won’t prove this yet.
An undecidable language
Instead, consider

LNSA = {w | the Turing machine M represented by w does not accept w}.

1. LNSA is the language of TM ids, w, such that the TM identified by w
does not accept w.

Remarks:
1. Lots of natural numbers will not identify any TM.
2. Such a natural number is not a candidate for membership in LSA, LNSA,

etc.
3. Checking whether an arbitrary natural number is f(M), for some TM,

M , is decidable.
Claim: LNSA not the language of any Turing machine.

Proof. 1. We will prove this via an adaptation of Cantor’s diagonalization
argument.

2. Towards a contradiction, suppose LNSA = L(M), for some TM M . Let
w = f(M). Two cases:
(a) If the Turing machine M represented by w accepts w (so that

w ∈ L(M)), then w /∈ LNSA. But LNSA = LM , contradiction.
(b) If the Turing machine M represented by w does not accept w (so

that w /∈ L(M)), then w ∈ LNSA. But LNSA = LM , contradiction.
3. All possibilities lead to contradiction.
4. This contradiction shows that LNSA differs from the languages of all

Turing machines.

Remarks:

124

1. The claim shoes that LNSA is not recursively enumerable.
2. It follows that LNSA is also not recursive (Every recursive language

is r.e.).
3. (The text denotes LNSA as Ld, d for diagonalization.)
4. We now see why the uniqueness of the identifier for a given Turing

machine is not crucial for this result:
5. No identifier w can represent a Turing machine M such that L(M) =

LNSA.

22.2 Other Undecidable Languages

The Universal Turing Machine
The Universal Turing Machine, U , simulates a Turing machine M , on an
input w.

1. Input: a pair, (e, w).
2. If e does not represent any TM, then U rejects (e, w).
3. Othereise, if e = f(M) for some Turing machine M , then

(a) If M accepts w, then U accepts (e, w).
(b) If M rejects w, then U rejects (e, w).
(c) If M runs forever on w, then U runs forever on (e, w).

Does U exist?
A: Yes. U will have four tapes:

1. Keep (e, w), which really is (M,w)
2. Mimic M ’s tape
3. Maintain the current state, q, of M
4. Use for scratch work

To simulate one transition (δ(q, a)) from M , inside of U :
1. Use tape #1, to look up M ’s transition δ(q, a).

(a) Important: e on tape #1 is the full specification of M .
2. Update M ’s state on tape #3.
3. Update M ’s tape contents on tape #2; move the tape head L or R.
4. Repeat as needed.

Define Lu = L(U): the universal language; it includes all pairs (e, w),
where

1. e = f(M) for some Turing machine M , and
2. w ∈ L(M).

Key Observations:
1. The universal language, Lu, is recursively enumerable.

125

(a) Trivial: U is a Turing machine; its language, Lu, is r.e.
2. Lu is not recursive.

(a) Toward a contradiction, suppose that Lu is decidable, by a TM,
U ′.

(b) Recall that LNSA is not r.e., and thus not recursive.
(c) We will obtain our contradiction by constructing a decider for

LNSA:
i. Let e be an arbitrary candidate for membership in LNSA, i.e.

e is a specification for an arbitary TM.
ii. Run U ′ on input (e, e).
iii. If U ′ accepts (e, e), then reject.
iv. If U ′ rejects (e, e), then

A. If e is the encoding of a Turing machine (which we can
test), then accept e.

B. Else reject e.
v. Since U ′ decides Lu, therefore U ′ cannot run forever.

We still need to argue that MNSA decides membership in LNSA.
(a) Suppose that e represents some Turing machine, M .
(b) If M accepts e, then U ′ accepts (e, e). Hence we answer e /∈ LNSA.
(c) If M does not accept e, then U ′ rejects (e, e). Hence we answer

e ∈ LNSA (if e identifies a TM). If e does not identify a TM, then
we answer e /∈ LNSA.

This shows that MNSA decides membership in LNSA. But LNSA is
not recursive! This is not possible! Therefore U ′ cannot exist. This
contradiction proves that Lu is not recursive.

Other recursively enumerable but not recursive languages
1. LSA

(a) LSA is r.e.
i. Construct a Turing machine M , which, on input w,
ii. runs U on (w,w) (recall, U is the universal TM),
iii. accepts if U accepts (w,w), and
iv. rejects if U rejects (w,w).
v. Note, U can run forever on input (w,w), causing M to run

forever on input w.
vi. Then by the definition of U , it is clear that L(M) = LSA.

(b) LSA is not recursive.
i. If it were, then we could decide membership in LNSA easily:
ii. Check w ∈ LSA and negate the answer for w ∈ LNSA.

126

iii. but since LNSA is not recursive (not even r.e.), this is impos-
sible.

2. LHalt = {(e, w) | TM represented by e, halts when processing w} See
M9 additional notes.

23 Lecture 23

Outline
1. Closure Rules for TM languages - M9 25-28
2. Reductions - M9 29-31
3. Other Undecidable Problems about Turing machines - M9 32-44
4. Rice’s Theorem - M9 45-49

23.1 Closure Rules for TM languages

1. Complements
Theorem: If L is recursive, then so is its complement L′.
(a) Proof: See the slides.
(b) Idea: Decide whether w ∈ L, then negate the answer for w ∈ L′.
Remark: This result is false if we replace ‘recursive’ with ‘recursively
enumerable’. With respect to taking complements, r.e. languages are
not as well-behaved as recursive languages.

2. Theorem: If both L and L′ are recursively enumerable, then L is
recursive.
Proof:
(a) We will construct a TM to decide L.
(b) Suppose that M accepts L and M ′ accepts L′.
(c) Create a 3-tape Turing machine, ML, to simulate running M and

M ′ in parallel, one step at a time.
i. tape #1 controls which of M or M ′ is currently executing,
ii. tape #2 simulates M ’s tape, and
iii. tape #3 simulates M ′’s tape.

(d) For any word w, either M or M ′ (and not both) must accept w in
a finite number of steps.
i. If M accepts w, then ML accepts w.
ii. If M ′ accepts w, then ML rejects w.

(e) Then ML decides L.

127

□
The Theorem says that r.e. languages cannot be closed under comple-
ments. If they were, then the Theorem says that every r.e. language is
recursive, which we know is not true, by last lecture.

3. Intersections
Theorem: The intersection of two r.e. languages is r.e..
(a) Proof: See the slides.
(b) Idea: Check whether w ∈ L1 and whether w ∈ L2 (if so, both will

be confirmed in finite time).
An analogous result holds for recursive languages. The proof is even
easier than for r.e. languages.

4. Unions
Theorem: The union of two r.e. languages is r.e.:
(a) Proof: See the slides.
(b) Idea: Non-deterministically check in parallel whether w ∈ L1 or

whether w ∈ L2 (if so, at least one will be confirmed in finite
time).

23.2 Reductions

Proper definition of reduction
1. Suppose we have two decision problems P1 and P2.
2. Suppose also that we have an algorithm A, that transforms an in-

stance for P1 into an instance for P2, such that:
(a) “Yes” instances of P1 get mapped to “yes” instances of P2,
(b) “No” instances of P1 get mapped to “no” instances of P2, and
(c) the algorithm A always takes finite time.

3. Then A constitutes a reduction from P1 to P2.
Theorem 9.7: If there is a reduction from P1 to P2, then

1. If P1 is undecidable, then P2 is also undecidable.
2. If P1 is non-recursively enumerable, then P2 is also non-recursively

enumerable.
Proof: See the slides.

128

23.3 Other Undecidable Problems about Turing ma-
chines

Instructor Note: You will only have time to present the details of at most
one of these in class, I think. Present the details for Lne and Le only.

1. Empty language: Given a Turing machine M , does it accept ∅?
(a) Nonempty language: Let

Lne = {w | w identifies the Turing machine M and L(M) ̸= ∅}.

i. Claim: Lne is recursively enumerable.
Here is an algorithm for a Turing machine Mne that accepts
Lne:
� Let w be the identifier for an arbitrary Turing machine
M .

� Non-deterministically guess a word x thatM might accept
(systematically test all possible words starting with the
shortest ones first).

� Nondeterministically execute M on all possible choices of
x.

� If M accepts any choice x, then Mne accepts w.
� Otherwise, all threads crash or run forever ⇒ Mne does
not accept w.

� Since Mne accepts Lne, therefore Lne is r.e..
ii. Claim: Lne is not recursive.

We give a proof using Theorem 9.7. (For a “bare hands”
proof, see the slides.)
Proof Using Theorem 9.7:
� Define
– P1: Is (e, w) in Lu? (i.e. membership in the universal

language, non-recursive), and
– P2: Is e

′ in Lne? (i.e. the unknown thing)
� The following algorithm A reduces P1 to P2:
– Let (e, w) be an arbitrary instance for P1.
– Construct a new Turing machine, M ′, to do the follow-

ing:
* M ′’s input is an arbitrary x ∈ Σ∗.
* M ′ will run U on (e, w).
* If U accepts (e, w), then M ′ accepts x.

129

* If U rejects (e, w), then M ′ rejects x.
* U may also run forever on (e, w). Then M ′ runs
forever on x.

– Then we have

L(M ′) =

{
Σ∗ if U accepts (e, w)
∅ otherwise

– Let e′ represent M ′.
– Now take e′ as the corresponding instance for P2.

� Then “yes” instances of P1 are sent to “yes” instances of
P2, and “no” instances of P1 are sent to “no” instances of
P2.

� Thus A reduces membership in Lu, the universal lan-
guage, to membership in Lne.

� As Lu is undecidable, therefore by Theorem 9.7, so is Lne.
iii. Simpler notation from now on: Lne = {M | L(M) ̸= ∅}.

� (From now on, we stop talking about f , the encoding, as
much.)

(b) Empty Language: Let

Le = {M | L(M) = ∅}.

Claim: Le is not r.e. (and hence is not recursive).
� The complement of Lne is

L′
ne = Le∪{w | w is not the encoding of any Turing machine }.

� As {w | w is not the encoding of any Turing machine } is de-
cidable, therefore it is also recursively enumerable.

� Towards a contradiction, suppose Le is r.e..
� Then so is L′

ne (as it is the union of two r.e. languages), by
r.e. language closure rules.

� But if a language and its complement are both r.e., then the
language is decidable.

� And we know that Lne is not decidable.
� So Le cannot be r.e..

2. Finite language: Given a Turing machine M , is L(M) finite?
(a) Infinite language: Let

L∞ = {M | L(M) is infinite }.

130

Then L∞ is undecidable:
Proof: See Lecture Slides.

(b) Finite language: I claim that Lfin = {M | L(M) is finite } is
also undecidable.
Proof: See Lecture Slides.

3. Regular language: Given a Turing machine M , is its language regular?
(a) Turing Machines with a Non-Regular Language

� Let Lnreg = {M | L(M) is not regular}.
� Then Lnreg is undecidable.
� See Lecture Slides for the proof.

(b) Turing Machines with a Regular Language
I claim that Lreg = {M | L(M) is regular } is also undecidable.
Proof: See Lecture Slides.

23.4 Rice’s Theorem:

These results suggest that any “interesting” property of Turing machine lan-
guages is not decidable. We make this notion precise in the following Theo-
rem.
Rice’s Theorem: Let P be a property of some, but not all, recursively
enumerable languages. (I.e. P is some non-empty proper subclass of the class
of r.e. languages.) Then the language LP = {M |L(M) ∈ P} is undecidable.
Remark: Here we only work with the identifiers for legal Turing machines.
Proof: Cases

1. Suppose that the empty language, ∅, is not in P .
� Let L be a non-empty recursively enumerable language that is in
P .

� Let ML be a Turing machine that accepts L.
� We will reduce membership in Lu to membership in LP , then
apply Theorem 9.7.

� Let (M,w) be a candidate instance for Lu.
� Create a new machine, M ′ that, on any input x, simulates U on
(M,w).
– If U accepts (M,w), then we simulate ML on x.

* If ML accepts x, then M ′ accepts x.
* If U rejects (M,w) or if ML rejects x, then M ′ rejects x.
* If U runs forever on (M,w), or if U accepts (M,w) and
ML then runs forever on x, then M ′ runs forever on x.

131

� The above construction gives us that the language of M ′ is

L(M ′) =

{
L if U accepts (M,w)
∅ otherwise

� Let w′ identify M ′.
� Take w′ as our candidate for membership in LP .
� Then “yes” instances for Lu are sent to “yes” instances for LP (as
we chose L ∈ P and L ̸= ∅), and

� “no” instances of Lu are sent to “no” instances for LP (as ∅ /∈ P).
� We have reduced membership in Lu to membership in LP .
� But since Lu is undecidable, then by Theorem 9.7, LP is also
undecidable.

2. Suppose that the empty language, ∅, is in P .
� Consider the property P ′, which is the negation of property P .
� Then since ∅ /∈ P ′, therefore testing membership in LP ′ is unde-
cidable, by the proof of Case 1.

� Since every Turing machine accepts a recursively enumerable lan-
guage, therefore (LP)

′ = LP ′ .
� For a contradiction, suppose that LP is decidable.
� Then (LP)

′ = LP ′ is also decidable.
� But this contradicts the fact that testing membership in LP ′ is
undecidable.

� Therefore LP must be undecidable.
Decidable Problems About TMs

1. “Does this Turing machine have fewer than k states?”
2. “Does this Turing machine ever move the tape head left on any input?”
3. Most decidable problems are not interesting.

Problems About Two TMs
There are obvious problems about two languages, too: given M1 and M2,

1. is L(M1) = L(M2)?
2. is L(M1) ⊆ L(M2)?
3. is L(M1) ∩ L(M2) = ∅, i.e. are the languages disjoint?

These are all undecidable, too.
1. Suppose we could decide any of these problems.
2. Then suppose we wanted to decide, for an arbitrary machineM , whether

M ∈ Le. (Recall: that problem is undecidable.)
3. Make new machines M2 that rejects all inputs, and M3 that accepts all

inputs.

132

4. If L(M) = L(M2), then M ∈ Le (else M /∈ Le).
5. If L(M) ⊆ L(M2), then M ∈ Le (else M /∈ Le).
6. If L(M) ∩ L(M3) = ∅, then M ∈ Le (else M /∈ Le).

In all three cases, given a machine that decides the desired equality or con-
tainment, we could then decide membership in Le, which is undecidable.

0

24 Lecture 24

Outline
1. Reductions, Revisited
2. Decision problems about CFGs and CFLs (Optional) - M9 50-59

(a) Post’s Correspondence Problem (Optional) - M9 51-53
3. Course Wrap-up - M9 60-69
4. Course Evaluations

24.1 Reductions, Revisited

Theorem 24.1.1. If there is a reduction from P1 to P2, then
1. If P1 is undecidable, then P2 is also undecidable.
2. If P2 is decidable, then P1 is also decidable.

Proof. 1. See the slides.
2. (a) Let A be a reduction from P1 to P2.

(b) Assume that P2 is decidable.
(c) Let D be a decider for P2.
(d) The following algorithm decides P1:

i. Let x be an arbitrary instance for P1.
ii. Let y be the instance for P2, which A produces from x.
iii. Apply D to y, and return the same answer for x.
iv. Because A is a reduction, the answer for y must also be correct

for x.

Remarks:
1. The second statement is not really needed, as it is simply the contra-

positive of the first. We state it explicitly because it can provide us
with another means of proving that a decision problem is decidable.

133

2. The existence of a reduction from P1 to P2 can be thought of as assert-
ing:
(a) P2 is at least as hard to solve as P1, eqivalently
(b) P1 is no harder to solve than P2.
These facts were the starting point for Q2 on A06.

24.2 Decision problems about CFGs and CFLs (Op-
tional)

We did not answer these questions, before:
1. CFG-intersection:

(a) Given: Two grammars G1 and G2.
(b) Question: Is L(G1) ∩ L(G2) ̸= ∅?

2. CFG-ambiguous:
(a) Given: Grammar G.
(b) Question: Is G ambiguous?

To show that they are both undecidable, we need to define a new problem.

24.2.1 Post’s Correspondence Problem (Optional)

1. It is a funny undecidable game (sort of).
2. It dates to roughly WWII.
3. We are given a finite set of “tiles”, where each tile contains two strings

over a finite alphabet Σ.

(a1, b1), (a2, b2), . . . , (an, bn).

4. We want a non-empty string x, where it is possible to join together
a sequence of tiles from the set (allowing repetition), and where the
concatenation of the ai strings and the concatenation of the bi strings
are both equal to x.

Example of PCP
Tiles:

T1 : (00, 001), T2 : (11, 10) and T3 : (011, 1).
Want: string x to obtain from both parts of the tiles.
1. (Note: we do not know what x is!)
2. Guess x. Suppose x = 001100011.
3. Tile sequence: (T1, T2, T1, T3).

134

4. Look at the first strings: 00 + 11 + 00 + 011 = 001100011
5. And the second strings: 001 + 10 + 001 + 1 = 001100011
6. These are the same.
7. We have exhibited a solution to this instance of PCP.
8. There are instances of PCP for which no solution exists. See Example

9.14 on p402 of the text.
9. So the question naturally arises: “Is there an algorithm to decide

whether any given instance of PCP has a solution or not?”
10. In other words, “Is PCP decidable?”

PCP is undecidable

Theorem 24.2.1. PCP is not decidable. (In other words, given any in-
stance of PCP, no algorithm exists to determine whether that instance can
be solved.)

Proof. This Theorem is proved by reducing membership in the universal
language to deciding PCP:

1. Given an instance (M,x) of the universal language Lu.
2. Compute a set of tiles, such that if M accepts x, it also is a “yes”

instance of the PCP, and vice versa.
3. See the text for details; it is pretty.

So what?
We can apply this fact to prove that the above two CFG problems are un-
decidable:

1. Deciding CFG-intersection decides PCP.
(a) Given any PCP instance (a1, b1), (a2, b2), . . . , (an, bn), let A =

{a1, . . . , an} and B = {b1, . . . , bn}.
(b) Let L(A) be all strings we can obtain by concatenating some words

from A together, ending with a string of tags ci to indicate the
reversed order of the tiles used.
i. Example: suppose we append a1, a3, a7. Then a1a3a7c7c3c1

needs to be in L(A).
ii. The reversed string of ci indicates which tiles were included.

(c) L(A) is context free:
i. GA : A → ε | a1Ac1 | a2Ac2 | · · · | anAcn.

(d) And similarly we define B, L(B) and GB.

135

(e) If L(A) and L(B) have non-empty words in common, then we can
solve the instance of PCP:
i. Suppose that some word in L(A) equals a word in L(B).
ii. Then we must have used the same set of tiles (because they

both end with the same string of cis).
iii. We also created the same word before the cis.

(f) If L(A) and L(B) have no non-empty words in common, then we
cannot solve the instance of PCP.

(g) So if we could decide CFG-intersection, then we could decide PCP,
which is undecidable.

(h) Therefore CFG-intersection is undecidable.
2. Deciding CFG-ambiguity decides PCP.

(a) Consider the grammars GA for L(A) and GB for L(B).
(b) Construct a new grammar GAB with

i. variables A, B and S (with S as the start variable),
ii. productions S → A|B,
iii. all the productions from GA and
iv. all the productions from GB.

(c) With this construction completed, we now have the desired result
by the following Theorem.

(d) Theorem: GAB is ambiguous if and only if the instance (A,B)
of PCP has a solution.

(e) Proof: (“If”)
i. Suppose that the indices i1, i2, . . . , im are a solution to this

instance of PCP.
ii. Then we have these derivations in GAB:

S ⇒ A ⇒ ai1Aci1 ⇒ ai1ai2Aci2ci1 ⇒ · · · ⇒ ai1 · · · aimcim · · · ci1
S ⇒ B ⇒ bi1Bci1 ⇒ bi1bi2Bci2ci1 ⇒ · · · ⇒ bi1 · · · bimcim · · · ci1

iii. By assumption, we have that ai1 · · · aim = bi1 · · · bim , i.e both
derivations yield the same terminal string.

iv. Since the derivations are distinct by construction, therefore
we conclude that GAB is ambiguous.

(f) (“Only if”)
i. Assume that GAB is ambiguous.
ii. The grammars GA and GB are unambiguous, because of the

trailing tile markers.

136

iii. So the only way that a terminal string can have two different
derivations in GAB is if one derivation starts with S → A and
the other starts with S → B.

iv. The string with two different derivations has a tail cim · · · ci1 ,
for some m ≥ 1.

v. This tail gives a solution to the instance of PCP, because
what precedes the tail is ai1 · · · aim in the first derivation and
bi1 · · · bim in the second, and by assumption these must be
equal.

24.3 Course Wrap-up

What questions do you have?

24.4 Course Evaluations

https://perceptions.uwaterloo.ca/

137

https://perceptions.uwaterloo.ca/

	Lecture 01
	Introduction to CS 360
	Terminology
	Languages
	Techniques of Proof

	Lecture 02
	Deterministic Finite Automata
	Nondeterministic Finite Automata

	Lecture 03
	-Nondeterministic Finite Automata

	Lecture 04
	Regular Expressions
	Regular Languages

	Lecture 05
	Kleene's Theorem

	Lecture 06
	Pumping Lemma for Regular Languages

	Lecture 07
	Closure Rules for Regular Languages
	Decision Problems for Regular Languages

	Lecture 08
	Context-Free Grammars and Languages

	Lecture 09
	Parse Trees
	Ambiguity in Context-Free Grammars - Definitions

	Lecture 10
	Ambiguity in Context-Free Grammars - Example

	Lecture 11
	Introduction to Pushdown Automata
	Computations in a PDA
	Bad things in PDAs
	Language of a PDA

	Lecture 12
	Acceptance By Empty Stack

	Lecture 13
	Equivalence of PDAs and CFLs

	Lecture 14
	Deterministic PDAs

	Lecture 15
	A Normal Form For CFGs

	Lecture 16
	Pumping Lemma for CFLs

	Lecture 17
	Closure Rules for CFLs
	Quick Review of Decidability/Undecidability
	Decision Problems for CFLs

	Lecture 18
	Limits of Computation
	Introduction to Turing machines
	Formal Definition of a Turing Machine

	Lecture 19
	Formal Definition of a Turing Machine

	Lecture 20
	Programming Turing machines
	Computable functions
	Using Subroutines

	Lecture 21
	Variations on a Turing machine
	Multiple Tapes
	Multiple Tape Heads
	Non-Determinism

	Lecture 22
	An Undecidable Language
	Other Undecidable Languages

	Lecture 23
	Closure Rules for TM languages
	Reductions
	Other Undecidable Problems about Turing machines
	Rice's Theorem:

	Lecture 24
	Reductions, Revisited
	Decision problems about CFGs and CFLs (Optional)
	Post's Correspondence Problem (Optional)

	Course Wrap-up
	Course Evaluations

