University of Waterloo Midterm Examination

Spring 2013

Student Name	
Student ID Number	

Course Abbreviation & Number	CS 360
Course Title	Theory of Computation
Section	01
Instructor	dan brown

Date of Exam	June 3	
Time Period: in-class	Start Time: 12:30 pm	End Time: 1:20 pm
Duration of Exam:	50 minutes	
Number of Exam Pages (including this cover sheet)	6 pages	

- 1. Complete all answers in the spaces provided.
- 2. Write neatly so you do not lose marks unnecessarily.
- 3. Proctors will only confirm or deny the existence of errors on the exam.
- 4. In the case of perceived ambiguity, state a clear assumption and proceed to answer the question.
- 5. Cheating is an academic offence. Your signature on this exam indicates that you understand and agree to the university's policies regarding cheating on exams.

#	Marks	Actual	Initial
1	8		
2	12		
3	12		
Σ	32		

Signature:_____

1. (8 marks): Recursive definitions and induction

Recall that L is a regular language if $L = \emptyset, L = \{\varepsilon\}, L = \{a\}$, where $a \in \Sigma$, or if $L = L_1 \cup L_2$ or $L = L_1 L_2$ for regular languages L_1 and L_2 , or if $L = L_1^*$ for regular language L_1 .

(a) (4 marks) Show that if L is regular, then so is L^k for every nonnegative integer k.

(b) (4 marks) Given that L^k is regular for every regular language L and non-negative integer k, do we still need the rule that L^* is also regular for every regular language L? Explain why or why not.

2. (12 marks): Regular languages

(a) (6 marks) Consider the language $L_1 = \{w \in \{0,1\}^* \mid 010 \text{ is a substring of } w\}$. Give a finite automaton (you can use a DFA, an NFA, or an ε -NFA) that accepts L_1 , and show informally why it is correct. (b) (6 marks) Consider the language $L_2 = \{w \in \{0,1\}^* \mid 010 \text{ is not a suffix of } w\}$. Give a regular expression for L, and show informally why it is correct. **Hint**: there is a fairly simple answer to this question that avoids grief.

3. (12 marks): A variant on NFAs

A thresholded DFA, or TDFA, M, is a 6-tuple $M = (Q, \Sigma, \delta, q_0, F, \theta)$, with two changes from ordinary DFAs.

- A counter c_q is kept for each state q of the number of times that state has been exited during the FA's computation. These are initialized to 0 at the beginning of the execution of the FA on a word w, and when transitioning out of state q, its counter is incremented. For example, after reading the first input letter and following the appropriate transition from q_0 , $c_{q_0} = 1$.
- θ is a vector of thresholds for each state in Q. If, for a given state q, we are about to take a transition from state q and c_q is already equal to θ_q , the TDFA instead terminates the computation and rejects the input word. All of the θ_q values are finite.
- (a) (6 marks) Is it true that every regular language L is the language of an TDFA? Prove your answer.

(b) (6 marks) Prove that every TDFA accepts a regular language.