# University of Waterloo Midterm Examination 

## Spring 2013

## Student Name

Student ID Number

Course Abbreviation \& Number CS 360
Course Title Theory of Computation
Section 01
Instructor
dan brown

Date of Exam
Time Period: in-class
Duration of Exam:
Number of Exam Pages
(including this cover sheet)

June 3
Start Time: 12:30 pm End Time: 1:20 pm
50 minutes
6 pages

1. Complete all answers in the spaces provided.
2. Write neatly so you do not lose marks unnecessarily.
3. Proctors will only confirm or deny the existence of errors on the exam.
4. In the case of perceived ambiguity, state a clear as-

| $\#$ | Marks | Actual | Initial |
| :---: | :---: | :---: | :---: |
| 1 | 8 |  |  |
| 2 | 12 |  |  |
| 3 | 12 |  |  |
| $\sum$ | 32 |  |  | sumption and proceed to answer the question.

5. Cheating is an academic offence. Your signature on this exam indicates that you understand and agree to the university's policies regarding cheating on exams.

Signature: $\qquad$

1. (8 marks): Recursive definitions and induction Recall that $L$ is a regular language if $L=\emptyset, L=\{\varepsilon\}, L=\{a\}$, where $a \in \Sigma$, or if $L=L_{1} \cup L_{2}$ or $L=L_{1} L_{2}$ for regular languages $L_{1}$ and $L_{2}$, or if $L=L_{1}^{*}$ for regular language $L_{1}$.
(a) (4 marks) Show that if $L$ is regular, then so is $L^{k}$ for every nonnegative integer $k$.
(b) (4 marks) Given that $L^{k}$ is regular for every regular language $L$ and non-negative integer $k$, do we still need the rule that $L^{*}$ is also regular for every regular language $L$ ? Explain why or why not.
2. (12 marks): Regular languages
(a) (6 marks) Consider the language $L_{1}=\left\{w \in\{0,1\}^{*} \mid 010\right.$ is a substring of $\left.w\right\}$. Give a finite automaton (you can use a DFA, an NFA, or an $\varepsilon$-NFA) that accepts $L_{1}$, and show informally why it is correct.
(b) (6 marks) Consider the language $L_{2}=\left\{w \in\{0,1\}^{*} \mid 010\right.$ is not a suffix of $\left.w\right\}$. Give a regular expression for $L$, and show informally why it is correct. Hint: there is a fairly simple answer to this question that avoids grief.

## 3. (12 marks): A variant on NFAs

A thresholded DFA, or TDFA, $M$, is a 6 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F, \theta\right)$, with two changes from ordinary DFAs.

- A counter $c_{q}$ is kept for each state $q$ of the number of times that state has been exited during the FA's computation. These are initialized to 0 at the beginning of the execution of the FA on a word $w$, and when transitioning out of state $q$, its counter is incremented. For example, after reading the first input letter and following the appropriate transition from $q_{0}, c_{q_{0}}=1$.
- $\theta$ is a vector of thresholds for each state in $Q$. If, for a given state $q$, we are about to take a transition from state $q$ and $c_{q}$ is already equal to $\theta_{q}$, the TDFA instead terminates the computation and rejects the input word. All of the $\theta_{q}$ values are finite.
(a) (6 marks) Is it true that every regular language $L$ is the language of an TDFA? Prove your answer.
(b) (6 marks) Prove that every TDFA accepts a regular language.

