University of Waterloo Midterm Examination

Spring 2013

Student Name	
Student ID Number	

Course Abbreviation & Number	CS 360
Course Title	Theory of Computation
Section	01
Instructor	dan brown

Date of Exam	July 3	
Time Period: in-class	Start Time: 12.30 pm	End Time: 1.20 pm
Duration of Exam:	50 minutes	
Number of Exam Pages (including this cover sheet)	6	

- 1. Complete all answers in the spaces provided.
- 2. Write neatly so you do not lose marks unnecessarily.
- 3. Proctors will only confirm or deny the existence of errors on the exam.
- 4. In the case of perceived ambiguity, state a clear assumption and proceed to answer the question.
- 5. Cheating is an academic offence. Your signature on this exam indicates that you understand and agree to the university's policies regarding cheating on exams.

#	Marks	Actual	Initial
1	8		
2	15		
3	10		
Σ	33		

Signature:

1. (8 marks): A non-regular language Consider the language $L = \{0^i 1^j 0^k 1^\ell \mid i+j=k+\ell \text{ and } i, j, k, \ell \ge 0\}.$

Prove that L is not regular.

2. (15 marks): A context-free language All four parts of this question concern the context-free grammar $G: S \rightarrow 0S11 \mid 0S111 \mid \varepsilon.$

(a) (2 marks) What is L(G)? (Describe the language; you'll prove your answer is correct in parts (b) and (c).)

(b) (4 marks) Let L be the language you described in part (a). Prove that $L \subseteq L(G)$.

(c) (6 marks) Let L be the language you described in part (a). Prove that $L(G) \subseteq L$. G is still the grammar $G: S \to 0S11 \mid 0S111 \mid \varepsilon$. (d) (3 marks) Prove that the grammar $G: S \to 0S11 \mid 0S111 \mid \varepsilon$ is ambiguous.

3. (10 marks): A pushdown automaton

Draw a pushdown automaton that accepts the language $L = \{0^{i}1^{j}0^{k}1^{\ell} \mid i+j=k+\ell \text{ and } i, j, k, l \geq 0\}$ by final state.

L is the language you proved is not regular in Question 1.

Explain briefly why your automaton is correct (you do not need to give a full proof).