CS 360
Fall 2021
Enumerators and Recursively Enumerable Languages

Jeffrey Shallit
School of Computer Science
University of Waterloo
shallit@uwaterloo.ca
https://cs.uwaterloo.ca/~shallit
Recall that a language L is *Turing-recognizable* if there exists a Turing machine T such that $L = L(T)$.

- If $x \in L$, then T must eventually halt and accept x.
- If $x \not\in L$, then T can either halt and reject x, or run forever.

Another term for Turing-recognizable is *recursively enumerable* or *r.e.*.

In this lecture we will see why this other term is sometimes used.
Enumerators

An *enumerator* for a language L is basically a Turing machine that lists the elements of L in some order (not necessarily radix order).

Formally, it is a Turing machine with two tapes. Tape 1 is a work tape. Tape 2 is the output tape. When started on two blank tapes, the Turing machine (eventually) writes the following on its second tape:

$$x_1 \# x_2 \# x_3 \# \cdots$$

where $L = \{x_1, x_2, x_3, \ldots\}$.

The Turing machine never moves left on tape 2, nor does it ever rewrite any symbol other than a blank.

In general, an enumerator is not required to halt.

And, of course, if the language is infinite, the enumerator will definitely not halt.
Enumerators

Every $x \in L$ eventually gets written.

No $x \notin L$ gets written.

There is no order required.

It is allowed to write the same x multiple times.
The main result

Theorem. A language L is Turing-recognizable iff there is an enumerator TM for L.

Proof. \iff: Suppose there is an enumerator TM T for L. We now create a 3-tape recognizer DTM T' for L from it.

Here is what T' does: on input x on tape 1, it simulates T on T''s tapes 2 and 3.

Tape 2 of T' is like tape 1 of T, and tape 3 of T' is like tape 2 of T.

Every time T writes a $\#$ symbol, T' compares its input on tape 1 to the string that T' just finished writing on tape 3. If they agree, then T' halts and accepts. Otherwise, T' continues the simulation of T.

The main result

If $x \in L$, then it is guaranteed that T eventually writes x on tape 2, so T' will write it on tape 3 and accept.

If $x \notin L$, then T will never write it on tape 2, so T' never accepts, but rather it runs forever.

This completes one direction of the proof.

The other direction is harder.
The naive solution would be to take a recognizer TM T for L and somehow produce an enumerator TM T' from it, by running T on every possible string $x \in \Sigma^*$, writing x on its output tape if T accepts.

But of course this doesn’t work, because T might fail to halt on some input, at which point T' would never write anything more out.

Instead we use a very clever technique called “dovetailing”.
In dovetailing, we *don’t* run T on x until it halts. Instead, we run T for a certain number of steps, and increase this number of steps throughout the computation.

Here’s the idea: write all the possible strings in Σ^* in radix order: $x_0 = \epsilon$, $x_1 = 0$, $x_2 = 1$, etc.

At iteration n we run T on x_i for n steps, for $0 \leq i \leq n$.

This requires putting a “clock” on a Turing machine. When we simulate another Turing machine, we have an extra tape, and at each move of the simulated Turing machine, we increment a counter on that tape.

Dovetailing
Dovetailing

For example for $\Sigma = \{0, 1\}$ we would

$n = 0$:
run T on ϵ for 0 steps

$n = 1$:
run T on ϵ for 1 step
run T on 0 for 1 step

$n = 2$:
run T on ϵ for 2 steps
run T on 0 for 2 steps
run T on 1 for 2 steps

$n = 3$: run T on ϵ for 3 steps
run T on 0 for 3 steps
run T on 1 for 3 step
run T on 00 for 3 steps ... and so forth.
We now construct an enumerator T' for L. T' has 5 tapes.

- Tape 1 holds n, initially 0.
- Tape 2 holds the i’th string x_i from Σ^*.
- Tape 3 is a work tape where we copy x_i and then simulate T on x_i for n steps.
- Tape 4 is used to record the number of steps carried out on tape 3. We increment this for every simulated move of T.
- Tape 5 is T'’s output tape.
Dovetailing

So the algorithm works as follows:

– increment i. If $i > n$, then increment n and set $i = 0$.

– erase tape 3 and write x_i on it.

– Simulate T on tape 3, recording the number of steps on tape 4, and continuing until this number is n.

– If T accepts at any point during this simulation, then T' writes $x_i\#$ on tape 5

– go back to the top of the loop.
If T accepts x_i, then it must do so after r steps for some r. Then when $n = r$, the machine T' writes out x_i on its output tape.

If T does not accept x_i, then T' will never write it out.

So T' is an enumerator for L.

So, now you know why recursively enumerable languages are called that.
Enumerators and Turing-decidable languages

There is also a characterization of the Turing-decidable languages in terms of enumerators.

Call an enumerator ordered if it enumerates the members of \(L \) in radix order, each element of \(L \) printed exactly once, separated by \#. If \(L \) is finite, the ordered enumerator should eventually halt.

Theorem. A language \(L \) has an ordered enumerator iff it is Turing-decidable.

Exercise: prove this.