## Module 2

## Finite Automata

The simplest computers for the simplest languages
CS 360: Introduction to the Theory of Computing Spring 2024

Topics of Module 2

- Deterministic finite automata
- Nondeterministic finite automata and the equivalence to DFAs
- $\varepsilon$-NFAs, and their equivalence to DFAs.

Deterministic finite automata

Finite automaton: a simple computing machine

- Given a finite input word, it moves from one program state to another.
- Each move is based on one input letter
- At the end of the input, the machine either accepts or rejects the input, depending on the machine state.
Vital limitation of a finite automaton:
- It cannot look back in its input.
- The only memory is in the state; aside from that, it has forgotten everything.


## Definitions

Finite automaton described by 5 parameters:

- $Q=$ set of computation states
- $\Sigma=$ finite input alphabet
- $\delta=$ transition function
- Important: In a DFA, there must be a transition defined for every state and for every possible alphabet character.
- $q_{0}=$ start state
- $F=$ accept states


This DFA


In this finite automaton:

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$,
- $\Sigma=\{0,1\}$,
- $\delta$ is a function from $Q \times \Sigma \rightarrow Q$.

It includes $\left(q_{0}, 0\right) \rightarrow q_{1}$

- $q_{0}=q_{0}$,
- $F=\left\{q_{2}\right\}$.

This DFA accepts the language of words with 00 as a substring.
Question: How would you prove that?

## Acceptance, extension

Given a DFA $M$, what does " $M$ accepts $w$ " mean?

- Starting at $q_{0}$, follow transition function $\delta$ for each letter in $w$, in order.
- String $w$ accepted by $M$ if at the end of $w$ 's transitions, we wind up in a state in $F$.
A more formal definition of acceptance comes by looking at the extended transition function, $\hat{\delta}$.
- $\hat{\delta}(q, w)$ : state we finish in if we start at state $q$ and follow $\delta$ for each letter in the word $w$ in turn.
Function $\hat{\delta}$ is a function from $Q \times \Sigma^{*} \rightarrow Q$. It usually cannot be written down in a closed form, which leads us to the following technique.

Formal definition of extended transition function

Formally, $\hat{\delta}(q, w)$ is defined recursively:

- $\hat{\delta}(q, \varepsilon)=q$, for all states $q$.
- If $|w|>0$, then we can write $w=x a$, where $|a|=1$.
- Then define $\hat{\delta}(q, w)=\delta(\hat{\delta}(q, x), a)$.

Unpack that:

- Let $q_{1}=\hat{\delta}(q, x)$.
- In words, $q_{1}$ is the state that we reach starting from $q$ after we have read the prefix $x$.
- Then, process the single letter $a: \delta\left(q_{1}, a\right)=\delta(\hat{\delta}(q, x), a)$.

This can be defined from the other end:

- If $w=a x$, then $\hat{\delta}(q, w)=\hat{\delta}(\delta(q, a), x)$.
- The textbook gives the first definition, so we will stick with that.

Lemma: Let $D=\left(Q, \delta, \Sigma, q_{0}, F\right)$ be a DFA, with extended transition function $\hat{\delta}$. Let $q \in Q$ and $a \in \Sigma$ be arbitrary. Then $\hat{\delta}(q, a)=\delta(q, a)$, i.e. $\hat{\delta}$ agrees with $\delta$ for any state $q$ and on any single alphabet symbol $a$. Proof:

$$
\begin{aligned}
\hat{\delta}(q, a) & =\hat{\delta}(q, \varepsilon a) \\
& =\delta(\hat{\delta}(q, \varepsilon), a) \\
& =\delta(q, a) .
\end{aligned}
$$

The language of the DFA $M$ : all words $M$ accepts.
Formally, acceptance of a word:

- $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts $w \in \Sigma^{*}$ exactly when $\hat{\delta}\left(q_{0}, w\right) \in F$.

Language of the DFA: all accepted words.

- $L(M)=\left\{w \in \Sigma^{*}\right.$ where $\left.\hat{\delta}\left(q_{0}, w\right) \in F\right\}$.
- (or just $\left\{w \in \Sigma^{*}\right.$ where $M$ accepts $\left.w\right\}$.)

Terminology: $L(M)$ can be called:

- The language of the DFA $M$
- The language accepted by the DFA $M$
- The language recognized by the DFA M


## Do DFAs compute?

In a certain sense, yes.
Example:

- "Is $x$ a multiple of 3 ?" can be answered by a DFA.
- The input word $w$ is the binary representation of $x$.
- Then the machine accepts $w$ if $x$ is a multiple of 3 .
- This language, $L=\{w \mid w$ is the binary representation of a number $x$ that is divisible by 3$\}$, is accepted by an DFA.
$-L$ includes $11,110,1111,0$, and does not include $10, \varepsilon$.
- So in that sense, yes, they compute.


## Divisibility DFA

Reminder of conventions:

- start state has an unlabelled arrow
- accept states are double circles
- label arrows with values for $\delta$

We will have a state for each remainder ( 0,1 , and 2 ), plus a special start state, so we do not accept $\varepsilon$.
This gives this DFA:


## Why does that DFA work?



- Adding a new symbol (0 or 1 ): double and add the new symbol.
- Double a multiple of 3 and add 0: a new multiple of 3 ,
- Double a multiple of 3 and add 1: a number with remainder 1 ,
- Double a number with remainder 1 and add 1: a multiple of 3,
- etc.
- We are in state $q_{i}$ when $i$ is the remainder considering what we have already read.

This machine only accepts multiples of 3 .

## Enhancements to DFAs

We are going to prove a theorem soon that FAs accept a specific class of languages, called regular languages.

- That should be robust: changes to an FA should not invalidate the property.
- So we will change FAs in a variety of small and large ways.
- The first major change is nondeterminism.

How does a DFA work?

- In a given state, for each input letter, there is exactly one choice for what to do, and
- The machine accepts if after all letters have been read, it is in an accept state.
What if there were choices, instead?
- In a given state, for each letter, there may be a choice of what to do.
- The machine accepts if some sequence of choices results in an accept state.
Nondeterministic FAs allow a huge blow-up in computation: there will be lots going on in parallel. As such they may not be very realistic models of any kind of computers.


## An example

$L=\{$ all words with 00 as the last two symbols $\}$


- Nondeterministic FA: Transition from a state, given an alphabet symbol, is to a set of possible states.
- Note: sometimes a state has no outgoing transition for a given symbol; the second state has no output labelled 1.
- If a thread reaches a state which has no outgoing transition for the given input symbol, then that thread crashes; it proceeds no further.


## Formal definition

NFA defined by 5 parameters

- $Q=$ set of computation states
- $\Sigma=$ finite input alphabet
- $\delta=$ transition function
- Important: In an NFA, there need not be a transition defined for every state and for every possible alphabet character.
- $q_{0}=$ start state
- $F=$ accept states

Differences from DFAs:

- $\delta$ : function from $Q \times \Sigma \rightarrow\{$ subsets of $Q\}$.
- Recall notation: $2^{Q}=\{$ subsets of $Q\}$.
- Based on a state in $Q$ and an input letter from $\Sigma$, which states are now active in $Q$ ?
- (Different from DFA, where it is from $Q \times \Sigma \rightarrow Q$.)
- Accepts whenever any state path from $q_{0}$ is to an accept state.


## New form for extended transition function

We must enhance the definition for our extended transition function. We now need to allow the output of the transition function to be a set of states instead of a single state.

- $\hat{\delta}(q, w)=$ all states that we can reach from start state $q$ processing the input word $w$.
- $\hat{\delta}$ : function $Q \times \Sigma^{*} \rightarrow 2^{Q}$.
- Base case: $\hat{\delta}(q, \varepsilon)=\{q\}$.
- Recursive case: If $|w|>0$, then we may write $w=x a$, where $|a|=1$.
- Then can we define $\hat{\delta}(q, x a)=\delta(\hat{\delta}(q, x), a)$ ?
- Well, no.
- The function $\delta$ is $Q \times \Sigma \rightarrow 2^{Q}$.
- But $\hat{\delta}(q, x)$ is in $2^{Q}$ instead of in $Q$, so $\delta(\hat{\delta}(\ldots), a)$ is not allowed.
- We really need to define $\hat{\delta}(q, x a)=\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$ instead.
- Note: This definition handles threads that crash correctly.
- A thread that crashes has no outgoing transition from state $p$ for input symbol $a$.
- In other words, $\delta(p, a)=\emptyset$.
- But then, $\delta(p, a)$ contributes nothing to the union of sets of states, reflecting the fact that the thread has crashed and proceeds no further.


## Acceptance by an NFA and the language of an NFA

Acceptance of an NFA:

- NFA $M$ accepts a word $w$ if $\hat{\delta}\left(q_{0}, w\right) \cap F$ is nonempty.
- There is a path from $q_{0}$, labelled by letters of $w$, winding up in an accept state from $F$.
Language of an NFA:
- The language of the NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is:

$$
L(M)=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq \emptyset\right\} .
$$

- That is, all words accepted by the NFA.


## Where are we?

DFAs:

- Model of computation: finite states, follow single transitions
- Acceptance of a word: transitions lead to an accept state from M
- Language: All accepted words

NFAs:

- Model of computation: finite states, possibly many transitions per letter, or possibly none.
- Acceptance: any path of transitions leads to an accept state.
- The extended transition function is more complicated.
- Language: All accepted words.

Are these different from each other in terms of power?
Both are limited in that they only read each input letter once, left-to-right.

Theorem: Let $L$ be a language that is accepted by an NFA. Then $L$ is accepted by a DFA.

- Note: The opposite direction is easy: DFAs are NFAs! (Well, must change $\delta$ trivially, so that the NFA transitions to the 1-element set corresponding to the transition in the DFA.)
- Need to show: Given an NFA, we can construct a DFA that accepts its language.


## Outline of proof

Here is how we will do this:

- Given an NFA $N$, we will construct a DFA, $D$.
- Then, we will have to show that $L(D)=L(N)$.
- As this is an equality of sets, we need to show that every word in $L(N)$ is in $L(D)$, and every word in $L(D)$ is in $L(N)$.
You have seen a little of this in CS 241.
First, let's build the DFA D, using the same alphabet $\Sigma$ that $N$ uses.
Remember: The machine $D$ does not have to have the same states as $N$, just the same alphabet and language!


## Computation in an NFA

How does the NFA $N$ work?

- If $N$ is in state $q$, after processing one letter $a, N$ could be in any state from the set $\delta(q, a)$.
- Then, $N$ processes the next letter and winds up in any of another set of states.
(That is what is built into the extended transition function, $\hat{\delta}_{N}$.)
- In the DFA $D$, a single state represents a set of states in the NFA $N$.
- When $D$ reads a new letter in, we jump from one state in the DFA to another (corresponding to the appropriate sets of states in the NFA $N$ ).


## Sketch of the process of the proof

This NFA accepts the language $L=\{$ words with 00 as a substring $\}$. How would you prove that?


- Its only accept state is $q_{2}$.
- Suppose we have processed some letters, and the NFA could be in either state $q_{0}$ or $q_{1}$, and the next input letter is 1 .
- From $q_{0}$ we go to $q_{0}$.
- From $q_{1}$, no transition labelled 1 .
- The new DFA, if it is in the set state $\left\{q_{0}, q_{1}\right\}$ and reads in a 1 , must go to the state corresponding to the set $\left\{q_{0}\right\}$.


## Sketch of the process of the proof

Here is idea of the algorithm for the subset construction for the transition function of $D$ :

- For each subset $S \subseteq Q$ of states from $N$ :
- Recall that $S$ corresponds to a single state in $D$.
- For each alphabet symbol, a:
- For each state $p \in S$, consider $\delta(p, a)$ (recall, this is a set of states).
- Gather all of these together. Let $T=\bigcup_{p \in S} \delta(p, a)$.
- Then $T$ also corresponds to a single state in $D$.
- Add the transition $S \xrightarrow{a} T$ to the transition function $\delta_{D}$ for $D$.

This procedure may make many new states
This 3-state NFA turns into a 4-state DFA.

- In general, if the NFA $N$ has $k$ states, the DFA $D$ could have $2^{k}$ states.
Here is the DFA:


And what are accept states?

- $F_{D}=\{$ States in $D$ that represent sets of states in $N$ that include at least one accept state from $\left.F_{N}\right\}$.

The full DFA


- Convince yourself that accepts the same language as the original construction.
- Interestingly, the DFA state $\left\{q_{0}, q_{2}\right\}$ is not needed, since we only get to it from another accept state.
- We really only needed 3 states.

Now, let's generalize this idea.

Subset construction (formal)
Given NFA $N=\left(Q_{N}, \Sigma, \delta_{N}, q_{0}, F_{N}\right)$, construct a new DFA
$D=\left(Q_{D}, \Sigma, \delta_{D},\left\{q_{0}\right\}, F_{D}\right)$, with these parameters:
$-Q_{D}=2^{Q_{N}}$.

- Let $S \in Q_{D}$, i.e. think of $S$ as a set of states from the definition of $N$. Then
- $F_{D}=\left\{S \in Q_{D} \mid S \cap F_{N} \neq \emptyset\right\}$
- That is, each acceptance state in $D$ corresponds to a set of states in $N$ with at least one accept state.
- And a more complicated transition function:

$$
\begin{aligned}
& \delta_{D}(S, a) \\
= & \{\text { all states reachable in } N \text { from } S \text { when we read } a\} \\
= & \bigcup_{p \in S} \delta_{N}(p, a) .
\end{aligned}
$$

- Let $D$ 's initial state be $\left\{q_{0}\right\}$, where $q_{0}$ is the initial state of $N$. This is a DFA, not an NFA. We know which state $D$ is in after reading any alphabet symbol.

The languages are equal

Now we must show that the languages of the NFA $N$ and the DFA $D$ equal. Think about which words are in the languages of $N$ and of $D$.

- $w \in L(N) \Leftrightarrow \hat{\delta}_{N}\left(q_{0}, w\right) \cap F_{N} \neq \emptyset$.
- $w \in L(D) \Leftrightarrow \hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right) \in F_{D}$.

By the definition of $F_{D}$, the second statement is equivalent to:

- $w \in L(D) \Leftrightarrow \hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right) \cap F_{N} \neq \emptyset$.

We must show these are the same: that if $w \in L(D)$, then $w \in L(N)$, and vice versa.

Must show: $w \in L(N) \Leftrightarrow w \in L(D)$.

- That is:

$$
\hat{\delta}_{N}\left(q_{0}, w\right) \cap F_{N} \neq \emptyset \Leftrightarrow \hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right) \cap F_{N} \neq \emptyset .
$$

- It suffices to show: $\hat{\delta}_{N}(q, w)=\hat{\delta}_{D}(\{q\}, w)$, for any state $q$ from the definition of $N$.
- (If one of these sets has a non-empty intersection with $F_{N}$, then so does the other)
Proof: By induction on $|w|$.
- Base case $(|w|=0)$ : Thus $w=\varepsilon$. Then $\hat{\delta}_{N}(q, \varepsilon)=\{q\}=\hat{\delta}_{D}(\{q\}, \varepsilon)$.
- Inductive case $(|w|>0)$ : The inductive hypothesis is that, for every $x$ with $|x|<|w|$, we have $\hat{\delta}_{N}(q, x)=\hat{\delta}_{D}(\{q\}, x)$, for any state $q$ from $N$.
- Since $|w|>0$, we may write $w=x a$, where $|a|=1$.
- Then the induction hypothesis applies to $x$, so $\hat{\delta}_{N}(q, x)=\hat{\delta}_{D}(\{q\}, x)$.


## Inductive case of the proof

- The induction hypothesis is that $\hat{\delta_{N}}(q, x)=\hat{\delta_{D}}(\{q\}, x)$.
- We need to show that $\hat{\delta_{N}}(q, x a)=\hat{\delta_{D}}(\{q\}, x a)$.
- So now we process the last character, $a$, on both sides.

$$
\begin{array}{cl}
\hat{\delta}_{D}(\{q\}, x a) \underbrace{=}_{\text {Definition of } \hat{\delta}_{D} \text { for the DFA } D} & \delta_{D}\left(\hat{\delta}_{D}(\{q\}, x), a\right) \\
\underbrace{=}_{\text {induction hypothesis }} & \delta_{D}\left(\hat{\delta_{N}}(q, x), a\right) \\
\underbrace{=}_{\text {Definition of } \delta_{D}} & \bigcup_{\text {Definition of } \hat{\delta}_{N}} \quad \delta_{N}(p, a) \\
p \in \hat{\delta}_{N}(q, x) \\
\hat{\delta_{N}}(q, x a) .
\end{array}
$$

Reading one more symbol in $N$, the set of states of $N$ we can be in corresponds with the state we will be in in $D$ (recall that a single state of $D$ represents a set of states of $N$ ).

- The NFA $N$ accepts the same language as the DFA $D$.

The class of languages accepted by NFAs is the same as for DFAs.

## Another expansion to NFA's: $\varepsilon$-transitions

Sometimes in designing an NFA, it is handy to have transitions that happen automatically, without reading any letters of the input.

- Machine models that allow this are $\varepsilon$-NFAs.
- An $\varepsilon$-NFA is a 5 -tuple, like an NFA.
- The only difference is transition function:
- $\delta$ is now a function: $Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$.
- (Transitions may exist that do not consume input letters.)

Example: The $\varepsilon$-NFA


Accepts binary words ending with 0 or with 01 . (We could do this without $\varepsilon$-transitions, by making the second state an accept state.)

## Formality about $\varepsilon$-NFAs

How do their extended transition functions look?

- Which states could I be in after processing the word $x$ ?
- Any states I could be in after just $x$, with no $\varepsilon$-transitions, plus
- Any states after just $x$, and one $\varepsilon$ transition, plus
- Any states after just $x$, and two $\varepsilon$ transitions, and so on ...
- ...until we exhaust all possible $\varepsilon$-transitions.

Unroll this to get a recursive definition for $\hat{\delta}$.

## Defining the $\varepsilon$-closure of a state

The definitions should be fairly similar:

- $\hat{\delta}(q, y)$ : states we can get to after processing $y$ and having $\varepsilon$-transitions.
Let's start with $\varepsilon$-transitions:
- Let $\operatorname{Eclose}(p)=$ all states reachable starting from $p$ only using $\varepsilon$-transitions.
- We can define $\operatorname{Eclose}(p)$ recursively:
- $p \in \operatorname{Eclose}(p)$
- If $q \in \operatorname{Eclose}(p)$, then so are all of the states in $\delta(q, \varepsilon)$.

The set $\operatorname{Eclose}(p)$ is called the $\varepsilon$-closure of the state $p$.
We will also allow $\operatorname{Eclose}(S)$ to be defined for a set $S$ of states via:

$$
\operatorname{Eclose}(S)=\bigcup_{s \in S} \operatorname{Eclose}(s)
$$

Defining the $\varepsilon$-closure of a state
Lemma: For an $\varepsilon$-NFA E, subset $S \subseteq Q$ and decomposition $S=\bigcup_{i} S_{i}$,

$$
\bigcup_{i} \operatorname{Eclose}\left(S_{i}\right)=\operatorname{Eclose}\left(\bigcup_{i} S_{i}\right),
$$

(i.e. taking $\varepsilon$-closure commutes with taking set unions).

Proof:


## The definition of the extended transition function

We can define $\hat{\delta}$ for $\varepsilon$-NFA's, also recursively.

- Base case: $\hat{\delta}(q, \varepsilon)=\operatorname{EcLose}(q):$ states reachable from $q$ with $\varepsilon$-transitions
- Inductive case: Suppose that $w=x a$, where $a \in \Sigma$. (Note: a cannot be $\varepsilon$, which is not a member of $\Sigma$.)
- We know that $P=\hat{\delta}(q, x)$ is the set of all states in $Q$ that we can get to by following either edges for the letters of $x$ or $\varepsilon$-transitions (including $\varepsilon$-transitions at the end of $x$ ).
- Then, we must follow the transitions for the alphabet symbol a: Let $R=\bigcup_{p \in P} \delta(p, a)$ : then $R$ has all of the states we can get to from $P$ after following a transition for $a$.
- Last, we might have some more $\varepsilon$-transitions.
- So, $\hat{\delta}(q, w)=\operatorname{EcLose}(R)=\operatorname{EcLose}\left(\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)\right)$


## Languages and power of $\varepsilon$-NFAs

- Language of an $\varepsilon$-NFA:
$L=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq \emptyset\right\}$
- That is, $\hat{\delta}\left(q_{0}, x\right)$ includes an accept state.

Are $\varepsilon$-NFAs more powerful?

- No.
- Theorem: Given an $\varepsilon$-NFA $E$, there exists an ordinary DFA $D$ such that $L(D)=L(E)$.
- This is not very surprising: we must show that we can include the $\varepsilon$-transitions of $E$ in the transition function $\delta_{D}$ for $D$.
- (The other direction is just by definition: a DFA is an $\varepsilon$-NFA, once we make some trivial changes to the structure of $\delta$ so that it produces a 1-element set when it reads a symbol and the empty set when it reads in $\varepsilon$.)
To prove the theorem, we must construct a DFA $D$ accepting language $L(E)$.


## The equivalent DFA

- Both machines use the same alphabet, of course.
- We use the subset construction, as when we built the DFA for an NFA.
- Starting state is $q_{D}=\operatorname{Eclose}\left(q_{0}\right)$. Thus, we start having implicitly taken $\varepsilon$-transitions from the starting state $q_{0}$ of $E$.

The complexity comes in the transition function and the accept states.

- Transition function:
- From one DFA state, $S$ (corresponding to a set of states in $E$ ), if we process one letter a in the new DFA, we should mimic this behaviour from $E$ :
- follow any edges labelled a
- take any $\varepsilon$-transitions
- From any one state from $E$, say $q$, this then takes us to:
- $\delta_{E}(q, a)$
- $\operatorname{Eclose}\left(\delta_{E}(q, a)\right)$
- And we therefore want the union over all states $q \in S$ : $\delta_{D}(S, a)=\bigcup_{q \in S} \operatorname{Eclose}\left(\delta_{E}(q, a)\right)$.


## Example of Subset Construction

- Here we demonstrate one step in the subset construction for the earlier small example of an $\varepsilon$-NFA:

- The subset construction gives us
$Q_{D}=\left\{\emptyset,\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$
$q_{D}=\operatorname{Eclose}\left(q_{0}\right)=\left\{q_{0}\right\}$
- Now we determine $\delta_{D}(S, a)$, where $S=\left\{q_{0}, q_{1}, q_{2}\right\}$ (the state we reach from $\left\{q_{0}\right\}$ upon reading 0 ) and $a=1$.
- Computing $\operatorname{Eclose}\left(\delta_{E}(p, a)\right)$ for each $p \in S$ gives

$$
\begin{aligned}
& \operatorname{Eclose}\left(\delta_{E}\left(q_{0}, 1\right)\right)=\operatorname{Eclose}\left(\left\{q_{0}\right\}\right)=\left\{q_{0}\right\} \\
& \operatorname{Eclose}\left(\delta_{E}\left(q_{1}, 1\right)\right)=\operatorname{Eclose}\left(\left\{q_{2}\right\}\right)=\left\{q_{2}\right\} \\
& \operatorname{Eclose}\left(\delta_{E}\left(q_{2}, 1\right)\right)=\operatorname{Eclose}(\emptyset)=\emptyset
\end{aligned}
$$

## Example of Subset Construction

- Hence the target state coming from the subset construction is $\left\{q_{0}, q_{2}\right\}$.
- The construction says that we need to add to the transition function for $D$ : $\delta_{D}\left(\left\{q_{0}, q_{1}, q_{2}\right\}, 1\right)=\left\{q_{0}, q_{2}\right\}$.
- Now to complete the transition function for $D$, we do this same construction for each of the 8 choices for $S$ (on the previous slide) and each alphabet symbol form $\Sigma=\{0,1\}$.


## Picking the accept states, equality of languages

- We need to figure out which states are accepting states:
- $F_{D}=\left\{S \mid S \in Q_{D}\right.$ and $\left.S \cap F_{E} \neq \emptyset\right\}$.
- Declare a word accepted by $D$ if $D$ is in an accept state (according to this recipe) when $D$ finishes processing the word.
- Now, to show equality of the languages of the two automata, we must show that if $x$ is accepted by $E$, then $x$ is accepted by $D$, and vice versa.
- (One concern: do we do the right thing for the word $\varepsilon$ ?)
- To show $L(E)=L(D)$, can show that $\hat{\delta}_{E}\left(q_{0}, x\right)=\hat{\delta}_{D}\left(q_{D}, x\right)$ ?
- If so, then we will be in the same set of $\varepsilon$-NFA states after reading $x$, and our definitions of $F_{D}$ and $F_{E}$ will guarantee that both machines will accept exactly the same words.


## Transition functions

We want to show: $\hat{\delta}_{E}\left(q_{0}, w\right)=\hat{\delta}_{D}\left(q_{D}, w\right)$, for all strings $w$. The proof is by induction on $|w|$.
Base case $(|w|=0)$ : In this case, $w=\varepsilon$. We have $\hat{\delta}_{E}\left(q_{0}, \varepsilon\right)=\operatorname{Eclose}\left(\left\{q_{0}\right\}\right)$, by definition of $\hat{\delta}_{E}$ in the $\varepsilon$-NFA.

- We therefore have

- So the base case holds.

Transition functions

Inductive case ( $|w|>0$ ):

- We need to argue that $\hat{\delta}_{E}\left(q_{0}, w\right)=\hat{\delta}_{D}\left(q_{D}, w\right)$.
- The induction hypothesis is that $\hat{\delta}_{E}\left(q_{0}, x\right)=\hat{\delta}_{D}\left(q_{D}, x\right)$, for all strings $x$ where $|x|<|w|$.
- Write $w=x a$, where $a$ is a single character.
- The induction hypothesis applies to $x$.
- Thus we may let $\hat{\delta}_{E}\left(q_{0}, x\right)=\hat{\delta}_{D}\left(q_{D}, x\right)=S$.
- Now we compute

Transition functions

$$
\hat{\delta}_{E}\left(q_{0}, w\right) \quad \underbrace{=}_{w=x a} \quad \hat{\delta}_{E}\left(q_{0}, x a\right)
$$

$$
\underbrace{=}_{\text {Definition of } \hat{\delta}_{E}} \operatorname{EcLosE}\left(\bigcup_{p \in \hat{\delta}_{E}\left(q_{0}, x\right)} \delta_{E}(p, a)\right)
$$

$$
\underbrace{=}_{\text {Definition of } S} \operatorname{EcLOSE}\left(\bigcup_{p \in S} \delta_{E}(p, a)\right)
$$

$$
\underbrace{=}_{\text {Lemma }}
$$

$$
\underbrace{=} \quad \delta_{D}(S, a)
$$

Definition of $\delta_{D}$

$$
\underbrace{=}_{\text {inition of } S}
$$

$$
\equiv
$$

Definition of $\hat{\delta}_{D}$

Transition functions

- Remark: You should convince yourself that the base case handles the input word $\varepsilon$ correctly.
- This argument did not use any special properties of $q_{0}$.
- We could re-run the argument with any state, $q$.
- Thus we could have proved, for any state $q$ and any word $w \in \Sigma^{*}$ :

$$
\hat{\delta}_{E}(q, w)=\hat{\delta}_{D}(\operatorname{Eclose}(q), x) .
$$

- We have proved by induction that the two extended transition functions agree on all input words.
- Therefore, as we argued earlier, this shows that the two automata accept precisely the same languages.
- So we are done.


## End of module 2

Hence, the class of languages accepted by $\varepsilon$-NFAs is the same as the class accepted by ordinary NFAs, which is the same as the class of languages accepted by DFAs.
We have now seen a collection of types of automata:

- Deterministic finite automata
- Nondeterministic finite automata
- $\varepsilon$-NFAs

All three accept the same class of languages. But what is that class? They are the regular languages.

