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Topics of Module 2

▶ Deterministic finite automata

▶ Nondeterministic finite automata and the equivalence to DFAs

▶ ε-NFAs, and their equivalence to DFAs.
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Deterministic finite automata

Finite automaton: a simple computing machine

▶ Given a finite input word, it moves from one program state to
another.

▶ Each move is based on one input letter

▶ At the end of the input, the machine either accepts or rejects the
input, depending on the machine state.

Vital limitation of a finite automaton:

▶ It cannot look back in its input.

▶ The only memory is in the state; aside from that, it has forgotten
everything.
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Definitions

Finite automaton described by 5 parameters:

▶ Q = set of computation states

▶ Σ = finite input alphabet

▶ δ = transition function
▶ Important: In a DFA, there must be a transition defined for every

state and for every possible alphabet character.

▶ q0 = start state

▶ F = accept states

0 0

1
1

0, 1q0 q1 q2
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This DFA

0 0

1
1

0, 1q0 q1 q2

In this finite automaton:

▶ Q = {q0, q1, q2},
▶ Σ = {0, 1},
▶ δ is a function from Q × Σ → Q.

It includes (q0, 0) → q1
▶ q0 = q0,

▶ F = {q2}.
This DFA accepts the language of words with 00 as a substring.
Question: How would you prove that?
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Acceptance, extension

Given a DFA M, what does “M accepts w” mean?

▶ Starting at q0, follow transition function δ for each letter in w , in
order.

▶ String w accepted by M if at the end of w ’s transitions, we wind up
in a state in F .

A more formal definition of acceptance comes by looking at the extended
transition function, δ̂.

▶ δ̂(q,w): state we finish in if we start at state q and follow δ for each
letter in the word w in turn.

Function δ̂ is a function from Q × Σ∗ → Q. It usually cannot be written
down in a closed form, which leads us to the following technique.
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Formal definition of extended transition function

Formally, δ̂(q,w) is defined recursively:

▶ δ̂(q, ε) = q, for all states q.

▶ If |w | > 0, then we can write w = xa, where |a| = 1.

▶ Then define δ̂(q,w) = δ(δ̂(q, x), a).

Unpack that:

▶ Let q1 = δ̂(q, x).

▶ In words, q1 is the state that we reach starting from q after we have
read the prefix x .

▶ Then, process the single letter a: δ(q1, a) = δ(δ̂(q, x), a).

This can be defined from the other end:

▶ If w = ax , then δ̂(q,w) = δ̂(δ(q, a), x).

▶ The textbook gives the first definition, so we will stick with that.
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Lemma about extended transition function

Lemma: Let D = (Q, δ,Σ, q0,F ) be a DFA, with extended transition
function δ̂. Let q ∈ Q and a ∈ Σ be arbitrary. Then δ̂(q, a) = δ(q, a), i.e.
δ̂ agrees with δ for any state q and on any single alphabet symbol a.
Proof:

δ̂(q, a) = δ̂(q, εa)

= δ(δ̂(q, ε), a)

= δ(q, a).

□
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Language of an DFA

The language of the DFA M: all words M accepts.
Formally, acceptance of a word:

▶ M = (Q,Σ, δ, q0,F ) accepts w ∈ Σ∗ exactly when δ̂(q0,w) ∈ F .

Language of the DFA: all accepted words.

▶ L(M) = {w ∈ Σ∗ where δ̂(q0,w) ∈ F}.
▶ (or just {w ∈ Σ∗ where M accepts w}.)

Terminology: L(M) can be called:

▶ The language of the DFA M

▶ The language accepted by the DFA M

▶ The language recognized by the DFA M
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Do DFAs compute?

In a certain sense, yes.
Example:

▶ “Is x a multiple of 3?” can be answered by a DFA.
▶ The input word w is the binary representation of x .
▶ Then the machine accepts w if x is a multiple of 3.

▶ This language, L = {w |w is the binary representation of a number x
that is divisible by 3}, is accepted by an DFA.
▶ L includes 11, 110, 1111, 0, and does not include 10, ε.

▶ So in that sense, yes, they compute.
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Divisibility DFA

Reminder of conventions:

▶ start state has an unlabelled arrow

▶ accept states are double circles

▶ label arrows with values for δ

We will have a state for each remainder (0, 1, and 2), plus a special start
state, so we do not accept ε.
This gives this DFA:

q q0

q1

q2

0

0

0

0

1 1

1

1
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Why does that DFA work?

q q0

q1

q2

0

0

0

0

1 1

1

1

▶ Adding a new symbol (0 or 1): double and add the new symbol.

▶ Double a multiple of 3 and add 0: a new multiple of 3,

▶ Double a multiple of 3 and add 1: a number with remainder 1,

▶ Double a number with remainder 1 and add 1: a multiple of 3,

▶ etc.

▶ We are in state qi when i is the remainder considering what we have
already read.

This machine only accepts multiples of 3.
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Enhancements to DFAs

We are going to prove a theorem soon that FAs accept a specific class of
languages, called regular languages.

▶ That should be robust: changes to an FA should not invalidate the
property.

▶ So we will change FAs in a variety of small and large ways.

▶ The first major change is nondeterminism.
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Nondeterminism

How does a DFA work?

▶ In a given state, for each input letter, there is exactly one choice for
what to do, and

▶ The machine accepts if after all letters have been read, it is in an
accept state.

What if there were choices, instead?

▶ In a given state, for each letter, there may be a choice of what to do.

▶ The machine accepts if some sequence of choices results in an
accept state.

Nondeterministic FAs allow a huge blow-up in computation: there will be
lots going on in parallel. As such they may not be very realistic models of
any kind of computers.
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An example

L = {all words with 00 as the last two symbols}

// q0

0,1





0 // q1
0 // q2

▶ Nondeterministic FA: Transition from a state, given an alphabet
symbol, is to a set of possible states.

▶ Note: sometimes a state has no outgoing transition for a given
symbol; the second state has no output labelled 1.

▶ If a thread reaches a state which has no outgoing transition for the
given input symbol, then that thread crashes; it proceeds no further.
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Formal definition

NFA defined by 5 parameters

▶ Q = set of computation states

▶ Σ = finite input alphabet

▶ δ = transition function
▶ Important: In an NFA, there need not be a transition defined for

every state and for every possible alphabet character.

▶ q0 = start state

▶ F = accept states

Differences from DFAs:

▶ δ: function from Q × Σ → {subsets of Q}.
▶ Recall notation: 2Q = {subsets of Q}.
▶ Based on a state in Q and an input letter from Σ, which states are

now active in Q?
▶ (Different from DFA, where it is from Q × Σ → Q.)

▶ Accepts whenever any state path from q0 is to an accept state.
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New form for extended transition function
We must enhance the definition for our extended transition function. We
now need to allow the output of the transition function to be a set of
states instead of a single state.
▶ δ̂(q,w) = all states that we can reach from start state q processing

the input word w .
▶ δ̂: function Q × Σ∗ → 2Q .
▶ Base case: δ̂(q, ε) = {q}.
▶ Recursive case: If |w | > 0, then we may write w = xa, where

|a| = 1.
▶ Then can we define δ̂(q, xa) = δ(δ̂(q, x), a)?

▶ Well, no.
▶ The function δ is Q × Σ → 2Q .
▶ But δ̂(q, x) is in 2Q instead of in Q, so δ(δ̂(. . .), a) is not allowed.
▶ We really need to define δ̂(q, xa) =

⋃
p∈δ̂(q,x) δ(p, a) instead.

▶ Note: This definition handles threads that crash correctly.
▶ A thread that crashes has no outgoing transition from state p for

input symbol a.
▶ In other words, δ(p, a) = ∅.
▶ But then, δ(p, a) contributes nothing to the union of sets of states,

reflecting the fact that the thread has crashed and proceeds no
further.
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Acceptance by an NFA and the language of an NFA

Acceptance of an NFA:

▶ NFA M accepts a word w if δ̂(q0,w) ∩ F is nonempty.

▶ There is a path from q0, labelled by letters of w , winding up in an
accept state from F .

Language of an NFA:

▶ The language of the NFA M = (Q,Σ, δ, q0,F ) is:

L(M) = {w ∈ Σ∗|δ̂(q0,w) ∩ F ̸= ∅}.

▶ That is, all words accepted by the NFA.

18



Where are we?

DFAs:

▶ Model of computation: finite states, follow single transitions

▶ Acceptance of a word: transitions lead to an accept state from M

▶ Language: All accepted words

NFAs:

▶ Model of computation: finite states, possibly many transitions per
letter, or possibly none.

▶ Acceptance: any path of transitions leads to an accept state.

▶ The extended transition function is more complicated.

▶ Language: All accepted words.

Are these different from each other in terms of power?
Both are limited in that they only read each input letter once,
left-to-right.
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NFAs are no more powerful than DFAs

Theorem: Let L be a language that is accepted by an NFA.
Then L is accepted by a DFA.

▶ Note: The opposite direction is easy: DFAs are NFAs!
(Well, must change δ trivially, so that the NFA transitions to the
1-element set corresponding to the transition in the DFA.)

▶ Need to show: Given an NFA, we can construct a DFA that accepts
its language.
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Outline of proof

Here is how we will do this:

▶ Given an NFA N, we will construct a DFA, D.

▶ Then, we will have to show that L(D) = L(N).

▶ As this is an equality of sets, we need to show that every word in
L(N) is in L(D), and every word in L(D) is in L(N).

You have seen a little of this in CS 241.
First, let’s build the DFA D, using the same alphabet Σ that N uses.
Remember: The machine D does not have to have the same states as N,
just the same alphabet and language!
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Computation in an NFA

How does the NFA N work?

▶ If N is in state q, after processing one letter a, N could be in any
state from the set δ(q, a).

▶ Then, N processes the next letter and winds up in any of another set
of states.
(That is what is built into the extended transition function, δ̂N .)

▶ In the DFA D, a single state represents a set of states in the NFA N.

▶ When D reads a new letter in, we jump from one state in the DFA
to another (corresponding to the appropriate sets of states in the
NFA N).
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Sketch of the process of the proof

This NFA accepts the language L = {words with 00 as a substring}. How
would you prove that?

0, 1

0, 1
0 0

q0 q1 q2

▶ Its only accept state is q2.

▶ Suppose we have processed some letters, and the NFA could be in
either state q0 or q1, and the next input letter is 1.
▶ From q0 we go to q0.
▶ From q1, no transition labelled 1.

▶ The new DFA, if it is in the set state {q0, q1} and reads in a 1, must
go to the state corresponding to the set {q0}.
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Sketch of the process of the proof

Here is idea of the algorithm for the subset construction for the transition
function of D:

▶ For each subset S ⊆ Q of states from N:
▶ Recall that S corresponds to a single state in D.
▶ For each alphabet symbol, a:

▶ For each state p ∈ S , consider δ(p, a) (recall, this is a set of states).
▶ Gather all of these together. Let T =

⋃
p∈S δ(p, a).

▶ Then T also corresponds to a single state in D.

▶ Add the transition S
a // T to the transition function δD for D.
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This procedure may make many new states
This 3-state NFA turns into a 4-state DFA.
▶ In general, if the NFA N has k states, the DFA D could have 2k

states.
Here is the DFA:

{q0} {q0, q1}

{q0, q1, q2}{q0, q2} 01

0

0
0

1

1
1

And what are accept states?
▶ FD = {States in D that represent sets of states in N that include at

least one accept state from FN}.
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The full DFA

{q0} {q0, q1}

{q0, q1, q2}{q0, q2} 01

0

0
0

1

1
1

▶ Convince yourself that accepts the same language as the original
construction.

▶ Interestingly, the DFA state {q0, q2} is not needed, since we only get
to it from another accept state.

▶ We really only needed 3 states.

Now, let’s generalize this idea.
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Subset construction (formal)
Given NFA N = (QN ,Σ, δN , q0,FN), construct a new DFA
D = (QD ,Σ, δD , {q0},FD) , with these parameters:

▶ QD = 2QN .

▶ Let S ∈ QD , i.e. think of S as a set of states from the definition of
N. Then

▶ FD = {S ∈ QD | S ∩ FN ̸= ∅}
▶ That is, each acceptance state in D corresponds to a set of states in

N with at least one accept state.

▶ And a more complicated transition function:

δD(S , a)

= {all states reachable in N from S when we read a}
=

⋃
p∈S

δN(p, a).

▶ Let D’s initial state be {q0}, where q0 is the initial state of N.

This is a DFA, not an NFA. We know which state D is in after reading
any alphabet symbol.
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The languages are equal

Now we must show that the languages of the NFA N and the DFA D
equal. Think about which words are in the languages of N and of D.

▶ w ∈ L(N) ⇔ δ̂N(q0,w) ∩ FN ̸= ∅.
▶ w ∈ L(D) ⇔ δ̂D({q0},w) ∈ FD .

By the definition of FD , the second statement is equivalent to:

▶ w ∈ L(D) ⇔ δ̂D({q0},w) ∩ FN ̸= ∅.
We must show these are the same: that if w ∈ L(D), then w ∈ L(N),
and vice versa.
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Proof

Must show: w ∈ L(N) ⇔ w ∈ L(D).

▶ That is:
δ̂N(q0,w) ∩ FN ̸= ∅ ⇔ δ̂D({q0},w) ∩ FN ̸= ∅.

▶ It suffices to show: δ̂N(q,w) = δ̂D({q},w), for any state q from the
definition of N.

▶ (If one of these sets has a non-empty intersection with FN , then so
does the other)

Proof: By induction on |w |.
▶ Base case (|w | = 0): Thus w = ε.

Then δ̂N(q, ε) = {q} = δ̂D({q}, ε).
▶ Inductive case (|w | > 0): The inductive hypothesis is that, for every

x with |x | < |w | , we have δ̂N(q, x) = δ̂D({q}, x), for any state q
from N.

▶ Since |w | > 0, we may write w = xa, where |a| = 1.

▶ Then the induction hypothesis applies to x , so
δ̂N(q, x) = δ̂D({q}, x).
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Inductive case of the proof
▶ The induction hypothesis is that δ̂N(q, x) = δ̂D({q}, x).
▶ We need to show that δ̂N(q, xa) = δ̂D({q}, xa).
▶ So now we process the last character, a, on both sides.

δ̂D({q}, xa) =︸︷︷︸
Definition of δ̂D for the DFA D

δD(δ̂D({q}, x), a)

=︸︷︷︸
induction hypothesis

δD(δ̂N(q, x), a)

=︸︷︷︸
Definition of δD

⋃
p∈δ̂N (q,x)

δN(p, a)

=︸︷︷︸
Definition of δ̂N

δ̂N(q, xa).

Reading one more symbol in N, the set of states of N we can be in
corresponds with the state we will be in in D (recall that a single state of
D represents a set of states of N).
▶ The NFA N accepts the same language as the DFA D.

The class of languages accepted by NFAs is the same as for DFAs.
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Another expansion to NFA’s: ε-transitions

Sometimes in designing an NFA, it is handy to have transitions that
happen automatically, without reading any letters of the input.

▶ Machine models that allow this are ε-NFAs.

▶ An ε-NFA is a 5-tuple, like an NFA.

▶ The only difference is transition function:

▶ δ is now a function: Q × (Σ ∪ {ε}) → 2Q .

▶ (Transitions may exist that do not consume input letters.)

Example: The ε-NFA

// q0

0,1





0 // q1
1,ε
// q2

Accepts binary words ending with 0 or with 01. (We could do this
without ε-transitions, by making the second state an accept state.)
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Formality about ε-NFAs

How do their extended transition functions look?

▶ Which states could I be in after processing the word x?

▶ Any states I could be in after just x , with no ε-transitions, plus

▶ Any states after just x , and one ε transition, plus

▶ Any states after just x , and two ε transitions, and so on ...

▶ ...until we exhaust all possible ε-transitions.

Unroll this to get a recursive definition for δ̂.
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Defining the ε-closure of a state

The definitions should be fairly similar:

▶ δ̂(q, y): states we can get to after processing y and having
ε-transitions.

Let’s start with ε-transitions:

▶ Let Eclose(p) = all states reachable starting from p only using
ε-transitions.

▶ We can define Eclose(p) recursively:
▶ p ∈ Eclose(p)
▶ If q ∈ Eclose(p), then so are all of the states in δ(q, ε).

The set Eclose(p) is called the ε-closure of the state p.
We will also allow Eclose(S) to be defined for a set S of states via:

Eclose(S) =
⋃
s∈S

Eclose(s).
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Defining the ε-closure of a state
Lemma: For an ε-NFA E, subset S ⊆ Q and decomposition S =

⋃
i Si ,⋃

i

Eclose (Si ) = Eclose

(⋃
i

Si

)
,

(i.e. taking ε-closure commutes with taking set unions).
Proof:⋃

i

Eclose (Si ) =︸︷︷︸
Definition of Eclose(Si )

⋃
i

(⋃
s∈Si

Eclose(s)

)

=︸︷︷︸
S=

⋃
i Si

⋃
s∈S

Eclose(s)

=︸︷︷︸
Definition of Eclose(S)

Eclose(S)

=︸︷︷︸
S=

⋃
i Si

Eclose

(⋃
i

Si

)
. □
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The definition of the extended transition function

We can define δ̂ for ε-NFA’s, also recursively.

▶ Base case: δ̂(q, ε) = Eclose(q):
states reachable from q with ε-transitions

▶ Inductive case: Suppose that w = xa, where a ∈ Σ.
(Note: a cannot be ε, which is not a member of Σ.)
▶ We know that P = δ̂(q, x) is the set of all states in Q that we can

get to by following either edges for the letters of x or ε-transitions
(including ε-transitions at the end of x).

▶ Then, we must follow the transitions for the alphabet symbol a: Let
R =

⋃
p∈P δ(p, a): then R has all of the states we can get to from P

after following a transition for a.
▶ Last, we might have some more ε-transitions.

▶ So, δ̂(q,w) = Eclose(R) = Eclose
(⋃

p∈δ̂(q,x) δ(p, a)
)
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Languages and power of ε-NFAs

▶ Language of an ε-NFA:

L =
{
w ∈ Σ∗ | δ̂(q0,w) ∩ F ̸= ∅

}
▶ That is, δ̂(q0, x) includes an accept state.

Are ε-NFAs more powerful?

▶ No.

▶ Theorem: Given an ε-NFA E , there exists an ordinary DFA D such
that L(D) = L(E ).

▶ This is not very surprising: we must show that we can include the
ε-transitions of E in the transition function δD for D.

▶ (The other direction is just by definition: a DFA is an ε-NFA, once
we make some trivial changes to the structure of δ so that it
produces a 1-element set when it reads a symbol and the empty set
when it reads in ε.)

To prove the theorem, we must construct a DFA D accepting language
L(E ).
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The equivalent DFA

▶ Both machines use the same alphabet, of course.

▶ We use the subset construction, as when we built the DFA for an
NFA.

▶ Starting state is qD = Eclose(q0). Thus, we start having implicitly
taken ε-transitions from the starting state q0 of E .

The complexity comes in the transition function and the accept states.

▶ Transition function:
▶ From one DFA state, S (corresponding to a set of states in E), if we

process one letter a in the new DFA, we should mimic this behaviour
from E :

▶ follow any edges labelled a
▶ take any ε-transitions

▶ From any one state from E , say q, this then takes us to:
▶ δE (q, a)
▶ Eclose(δE (q, a))

▶ And we therefore want the union over all states q ∈ S :
δD(S , a) =

⋃
q∈S Eclose(δE (q, a)).
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Example of Subset Construction
▶ Here we demonstrate one step in the subset construction for the

earlier small example of an ε-NFA:

// q0

0,1





0 // q1
1,ε
// q2

▶ The subset construction gives us

QD = {∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}}
qD = Eclose(q0) = {q0}

▶ Now we determine δD(S , a), where S = {q0, q1, q2} (the state we
reach from {q0} upon reading 0) and a = 1.

▶ Computing Eclose(δE (p, a)) for each p ∈ S gives

Eclose(δE (q0, 1)) = Eclose({q0}) = {q0}
Eclose(δE (q1, 1)) = Eclose({q2}) = {q2}
Eclose(δE (q2, 1)) = Eclose(∅) = ∅
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Example of Subset Construction

▶ Hence the target state coming from the subset construction is
{q0, q2}.

▶ The construction says that we need to add to the transition function
for D: δD ({q0, q1, q2}, 1) = {q0, q2}.

▶ Now to complete the transition function for D, we do this same
construction for each of the 8 choices for S (on the previous slide)
and each alphabet symbol form Σ = {0, 1}.
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Picking the accept states, equality of languages

▶ We need to figure out which states are accepting states:
▶ FD = {S | S ∈ QD and S ∩ FE ̸= ∅}.

▶ Declare a word accepted by D if D is in an accept state (according
to this recipe) when D finishes processing the word.

▶ Now, to show equality of the languages of the two automata, we
must show that if x is accepted by E , then x is accepted by D, and
vice versa.
▶ (One concern: do we do the right thing for the word ε?)
▶ To show L(E) = L(D), can show that δ̂E (q0, x) = δ̂D(qD , x)?
▶ If so, then we will be in the same set of ε-NFA states after reading x ,

and our definitions of FD and FE will guarantee that both machines
will accept exactly the same words.
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Transition functions
We want to show: δ̂E (q0,w) = δ̂D(qD ,w), for all strings w . The proof is
by induction on |w |.
Base case (|w | = 0): In this case, w = ε. We have

δ̂E (q0, ε) = Eclose({q0}), by definition of δ̂E in the ε-NFA.

▶ We therefore have

δ̂E (q0, ε) =︸︷︷︸
ε−NFA rule

Eclose({q0})

=︸︷︷︸
singleton set property

Eclose(q0)

=︸︷︷︸
Definition of qD

qD

=︸︷︷︸
D is a DFA

δ̂D(qD , ε)

=︸︷︷︸
Definition of qD

δ̂D(Eclose(q0), ε).

▶ So the base case holds.
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Transition functions

Inductive case (|w | > 0):

▶ We need to argue that δ̂E (q0,w) = δ̂D(qD ,w).

▶ The induction hypothesis is that δ̂E (q0, x) = δ̂D(qD , x), for all
strings x where |x | < |w |.

▶ Write w = xa, where a is a single character.

▶ The induction hypothesis applies to x .

▶ Thus we may let δ̂E (q0, x) = δ̂D(qD , x) = S .

▶ Now we compute
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Transition functions

δ̂E (q0,w) =︸︷︷︸
w=xa

δ̂E (q0, xa)

=︸︷︷︸
Definition of δ̂E

Eclose

 ⋃
p∈δ̂E (q0,x)

δE (p, a)


=︸︷︷︸

Definition of S

Eclose

⋃
p∈S

δE (p, a)


=︸︷︷︸

Lemma

⋃
p∈S

Eclose(δE (p, a))

=︸︷︷︸
Definition of δD

δD(S , a)

=︸︷︷︸
Definition of S

δD(δ̂D(Eclose(q0), x), a)

=︸︷︷︸
Definition of δ̂D

δ̂D(Eclose(q0), xa) =︸︷︷︸
w=xa

δ̂D(Eclose(q0),w).
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Transition functions

▶ Remark: You should convince yourself that the base case handles
the input word ε correctly.

▶ This argument did not use any special properties of q0.

▶ We could re-run the argument with any state, q.

▶ Thus we could have proved, for any state q and any word w ∈ Σ∗:

δ̂E (q,w) = δ̂D(Eclose(q), x).

▶ We have proved by induction that the two extended transition
functions agree on all input words.

▶ Therefore, as we argued earlier, this shows that the two automata
accept precisely the same languages.

▶ So we are done.

44



End of module 2

Hence, the class of languages accepted by ε-NFAs is the same as the
class accepted by ordinary NFAs, which is the same as the class of
languages accepted by DFAs.
We have now seen a collection of types of automata:

▶ Deterministic finite automata

▶ Nondeterministic finite automata

▶ ε-NFAs

All three accept the same class of languages. But what is that class?
They are the regular languages.
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