
Module 3
Regular languages and regular
expressions
What can a computer do with no memory?
CS 360: Introduction to the Theory of Computing

Collin Roberts, University of Waterloo

3.1

Topics of Module 3

• Regular Expressions
• Regular Languages
• Kleene’s Theorem

3.2

1 Regular Expressions

Regular Expressions
Recall our earlier rules for constructing new languages from existing languages:

1. Union L∪M of languages L and M
2. Concatenation LM of languages L and M
3. Closure L∗ of a language L

3.3

Regular Expressions
Let Σ be a finite alphabet. We construct the regular expressions over Σ (and describe the language

which each regular expression represents, i.e. the set of words that fit into the mold defined by the
regular expression) recursively, as follows.

Base

1. /0 is a regular expression, and L( /0) = /0.
2. ε is a regular expression, and L(ε) = {ε}.
3. If a ∈ Σ is any symbol, then a is a regular expression and L(a) = {a}.

Induction

1. If E and F are regular expressions, then E +F is a regular expression, and L(E +F) = L(E)∪
L(F).

2. If E and F are regular expressions, then EF is a regular expression, and L(EF) = L(E)L(F).
3. If E is a regular expression, then E∗ is a regular expression, and L(E∗) = (L(E))∗.
4. If E is a regular expression, then (E) is a regular expression, and L((E)) = L(E).

Remark: The regular expression for L = {w} is just w itself. 3.4
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Order of Precedence for Regular Expressions
As in algebra, there is an order of operations here:

1. Parentheses are used to override (or emphasize) the default order as needed.
2. ∗

3. Concatenation
4. +

Recommended Reading: Example 3.2 starting on p89 of the text (a regular expression over Σ =
{0,1}). 3.5

2 Regular Languages

Regular Languages
A language L is regular if it obeys the following recursive definition:
Base

1. L = /0 is regular.
2. L = {ε} is regular.
3. L = {a} for some alphabet letter a ∈ Σ is regular.

Induction

1. L = L1 ∪L2, for regular languages L1, L2
2. L = L1L2 for regular languages L1, L2
3. L = L∗

1, for some regular language L1

No other languages are regular.
Remember that /0 ̸= {ε}! 3.6

Beginnings of regular languages
First simple Theorem: All one-word languages L are regular.
Proof: Let L = {w}. The proof is by induction on |w|:
• Case 1: |w|= 0. Then L = {ε}, which is regular by a rule.
• Case 2: |w| > 0. The induction hypothesis is that the Theorem is true for all one-word lan-

guages {x}, where |x|< |w|.
– Let w = xa, where a is a single character.

– Then L1 = {x} is regular by the induction hypothesis.

– And L2 = {a} is regular by a rule.

– And L = L1L2, which is regular by a rule.

– We are done.
3.7

Finite languages are regular
Theorem: If L has a finite number of words, then L is regular.
Proof: By induction on |L|:
• Base case: |L| = 0. Then L = /0, which is regular by a rule.
• Inductive case: Suppose all finite languages with k words are regular, and |L|= k+1.

– Then L = {w1,w2, . . . ,wk+1}= {w1,w2, . . . ,wk}∪{wk+1}.

– By the induction hypothesis, the first language is regular.

– By the previous Theorem, the second language is regular.

– So L is the union of two regular languages, and thus L is regular.
3.8
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Are all languages regular?
Every language is the union of a set of one-word languages.
Are all languages regular, using the proof model just shown?
• No!
• Finite unions are not infinite unions! We cannot do induction in that way!
• In fact, {ε,01,0011,000111,00001111,0000011111,000000111111, . . .} is not regular, which

we will see in the next module. 3.9

Regular expressions
Regular expressions are another way of representing regular languages:

L = /0 /0
L = {ε} ε

L = {a} a
L = L∗

1 r∗1
L = L1L2 r1r2
L = L1 ∪L2 r1 + r2

• (Yes, just like in grep. But you might have already known that.)
• If R is a regular expression, then L(R) is the language of R, defined as we did earlier.

3.10

Examples of regular languages

• If Σ = {0,1}, then Σ∗ = {0,1}∗. Regular expression: (0+1)∗

• Even-length sequences: Can be divided into 2-letter sub-words. (00 + 11 + 01 + 10)∗ or
((0+1)(0+1))∗

• Sequences with length at most 3: (0+1)(0+1)(0+1)+(0+1)(0+1)+(0+1)+ ε or (0+
1+ ε)(0+1+ ε)(0+1+ ε) or ε +1+0+11+10+01+00+111+ · · ·

• Sequences with at most two zeros: 1∗(0+ ε)1∗(0+ ε)1∗

• And lots more.
3.11

Basic rules about regular languages
Basic rules that you can often use (not exciting, but true. . . ):
• /0e = e /0 = /0 (If w ∈ L( /0e),w = w1w2 where w1 ∈ L( /0). But nothing works for w1.)
• /0∗ = {ε} (might be surprising)
• {ε}∗ = {ε}
• x+ x = x (remember, + means union)
• (x∗)∗ = x∗ (Taking closure twice equals taking closure once)

– Side Note: an operation for which applying the operation twice equals applying the op-
eration once is called idempotent.

– Other natural examples of idempotents are projections in linear algebra.

• x(y+ z) = xy+ xz
Tons more of these, but we will not focus on them. The first two might be surprising, and are thus
important. 3.12

3 Kleene’s Theorem

Kleene’s Theorem
Theorem: Every regular language is the language of a DFA, and every DFA accepts a regular

language.
• Recall: We saw that DFAs are equally powerful to ε-NFAs.
• We will show how to go from a regular language to an equivalent ε-NFA.
• We will find a regular language which coincides with the language of a DFA.
• Together these constructions will prove the Theorem.

3.13
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How to accept L1 ∪L2?
What about for L1 ∪L2, if both are accepted by NFAs M1 and M2?

• Can we start out by going to both NFAs, M1 and M2, and just accept in either?
• Again this requires transitions that do not use letters from the input.
• The set of accepting states in the constructed machine is the union of the sets of accept states

of M1 and M2.

M2

M1

3.14

How to accept L1L2?
Suppose L1 is accepted by NFA M1, and L2 is accepted by NFA M2.
Find: A new ε-NFA M accepting L1L2 (L1 concatenated to L2).

• We would kind of like:

M1

M2

• ... where the combined machine M only accepts in M2’s accept states
• and where the new machine M jumps from accept states of M1 to start state of M2 without

reading input characters.
3.15

Easy with an ε-NFA
In both cases, and for the closure operator, we can do this with ε-transitions:
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M1

q0

M1

M2

M2

M1

Kleene Star

Union

Concatenation

ε

ε

ε

ε
ε

3.16

Proof of the Theorem
We want to prove:

• For every regular language L, there is an ε-NFA M, where L(M) = L.
• Recall: L is a regular language if L is any of:

Base

1. /0

2. {ε}
3. {a}, for some alphabet character a ∈ Σ

Induction

1. L1 ∪L2 for regular languages L1 and L2.

2. L1L2 for regular languages L1 and L2

3. L∗
1 for regular language L1

We will show an ε-NFA for the base cases, then prove the existence of the other three cases by
structural induction. 3.17

Base cases

• The base cases are easy:
/0 {ε} {a}

a

• Now, we must show the machines for the recursive definitions of regular languages.
• Assume L1 and L2 are regular languages, and that they are accepted by ε-NFAs M1 and M2,

respectively.
• We must give ε-NFAs for L1L2, L∗

1 and L1 ∪L2.
3.18
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Inductive cases

But, we already showed those, right?

M1

q0

M1

M2

M2

M1

Kleene Star

Union

Concatenation

ε

ε

ε

ε
ε

3.19

We are not actually done yet

• It might seem like that is all we have to do.
• But must verify we have made the right construction, with a proof.
• One informal proof that this works, for the Kleene ∗ operator:

– Consider the Kleene ∗ construction L∗
1 for some regular language L1.

– Suppose x accepted by the ε-NFA, M, which we have constructed as above for L∗
1 (i.e.

suppose x ∈ L(M)).

– Then there is a path in M for x ending in the start state.

– This path can then be broken down into sub-paths, each of which begins and ends in the
start state.

– Each sub-path from the start state back to the start state corresponds exactly to a word
from L1 (M1 accepts exactly L1, and the only non-trivial path to the accept state of M is
via an ε-transition from an accept state of M1).

– Therefore x is a concatenation of zero or more words in L1, in other words x ∈ L∗
1. (Note

that x can be ε .)

– This shows that L(M)⊆ L∗
1.

3.20

The other direction
Now, suppose that x ∈ L∗

1.

• Then x = x1x2x3 · · ·xk, with all xi ∈ L1.
• So there is a path from start state in the new machine to an accept state for each of the xi.
• Join the paths together, following each with the ε-transition back to the start state to get a path

for x from the start state back to itself.
• The start state is an accept state, so our new machine accepts x.
• So x ∈ L(M).
• This shows that L∗

1 ⊆ L(M).

Now we are done.

• We have shown that L(M)⊆ L∗
1 and L∗

1 ⊆ L(M).
• Therefore we have L(M) = L∗

1, as claimed.

The other arguments are left as exercises. 3.21
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Where are we going, again?
To prove:

• The class of regular languages is the class of languages accepted by finite automata.

We have already seen:

• From a regular language, we can produce an ε-NFA which recognizes the given language.
• Languages accepted by ε-NFAs = Languages accepted by DFAs (Module 2)
• Languages accepted by NFAs = Languages accepted by DFAs (also Module 2)

So given a regular language, we can produce a DFA which accepts the regular language.
Now we need to go the other way, i.e. given a DFA, produce a regular language which is the

language of the DFA. 3.22

Find a regular expression for a DFA
Given a DFA D, we must find a regular expression for its language.
One idea:

• Paths through a state can be replaced by the regular expression that represents going from the
previous state to the next one.

p
0
// q

1

��

0
// r

• Remove q, and represent this as:

p 01∗0 // r

3.23

State removal
More general:

• What about accept states and the start state?
• Make a new start state, s, with an ε-transition to the old start state
• Make a new accept state, f , with an ε-transition from all old accept states.

(Why? To avoid incoming/outgoing edges in start/final states.) 3.24

Removing states
Edges in our “generalized FA” labelled with regular expressions.

• For each state q that is not s or f :

– For all state pairs (p, r) that “flank” q: (p could be the same as r, but q cannot equal p or
r)

* Let e1 = label of edge from p to q

* Let e2 = label of edge from q to r

* Let e3 = label of loop from q to itself (or /0 if there is not one)

* Let e4 = label of edge from p to r (or /0 if there is not one).

* Make an edge from p to r with label e4+e1e∗3e2. Remember: /0∗ = ε for our purposes
here .

– Then remove the node q.

At the end of the process, we will have a single edge, from s to f . 3.25

7



And the label is the expression

• At the end of state elimination, the edge from s to f is labelled with a regular expression for
the DFA’s language.

• Let’s do an example.

// q0

0

PP
1
// q1

0}}

1

��

• First, make states s and f :

// s
ε
// q0

0

PP
1
// q1

0}}

1

��

ε
// f

3.26

State elimination example
Now, eliminate state q0.
• Consider all possible paths through q0.
• The possible choices of flanking pairs for q0 in this example are

– (s,q1): For this pair, we have e1 = ε,e2 = 1,e3 = 0,e4 = /0, which means our new diagram
must include

s /0+ε0∗1
// q1 , or equivalently, s 0∗1 // q1 .

– (q1,q1): For this pair, we have e1 = 0,e2 = 1,e3 = 0,e4 = 1, which means our new
diagram must include

q1
1+00∗1

// q1 .

3.27

State elimination example
Now, finish eliminating state q0.
• We add an edge from s to q1, and change the label of the self-loop on q1:

// s 0∗1 // q1

1+00∗1

��

ε
// f

3.28

End of example
Now, eliminate state q1 in the same way.
• Paths from s to f via q1 require a word in 0∗1, followed by any number of words in (1+00∗1),

followed by ε .
• This gives this new FA:

// s
0∗1(1+00∗1)∗

// f

And the language of the original FA is L(0∗1(1+00∗1)∗).
Note: this may not be the simplest possible form for this regular expression!
(What is? How long an expression can this generate?) 3.29
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This is not a proof!
No, it is not. We can give a formal proof for state removal, but we will not.
We will give a formal proof, but with a different way of showing that L(M) is regular, where M

is an arbitrary DFA.
Recall:

• L(M) = {x ∈ Σ∗ | δ̂ (q0,x) ∈ F}=⋃
r∈F{x ∈ Σ∗ | δ̂ (q0,x) = r}

• Characterize all strings that take us from some state q to r: Define L(q,r) = {x ∈ Σ∗ | δ̂ (q,x) =
r}.

• With this definition, L(M) =
⋃

r∈F L(q0,r).
• This is the set of words that take us from q0 to any accept state r.

3.30

Proving this language is regular

• L(M) =
⋃

r∈F L(q0,r).
• This is a finite union, so if all L(q0,r) are regular, then so is L(M). (Prove this, by induction

on |F |!)
What we now want:

• Theorem: for any two states q and r in a DFA, L(q,r) is regular.
• We will prove this using structural induction.
• How do we get from q to r?
• Do we use an intermediate state p?
• If so, we go from q to p, maybe from p to itself, then from p to r.
• One term of the regular expression for L(q,r) might be L(q, p)L(p, p)∗L(p,r).

But structural induction needs a base case!
[Remember: structural induction goes from “simple” structures to “complex”] 3.31

New definitions
How can we make the base case simple enough?

• Restrict the number of states that can come between q and r, and grow this set of states.
• Number the states of the DFA M 1, . . . ,n.
• Let L(q,r,k) = { all words in L(q,r) where all intermediate states between q and r are from

1, . . . ,k}. (Remember, M is a DFA, so each word has only one state path.)
3.32

More about the languages L(q,r,k)

• If the path from q to r for word x uses state k, then x is not in L(q,r,k−1), or L(q,r,k−2), or
any other L(q,r, i) for i < k.

• Formally: L(q,r,k) = {x ∈ Σ∗ | δ̂ (q,x) = r and δ̂ (q,w) ≤ k for all proper prefixes of w of x
where w ̸= ε and w ̸= x}.

• (Terminology: w is a proper prefix of x if w is a prefix of x and not equal to x.)
• Now it is enough to show L(q,r,n) is regular, since L(q,r) = L(q,r,n).
• Then it is enough show that L(q,r,k) is regular for all k.
• The proof is by induction on k.

3.33

Goal, beginning of proof
Goal: L(q,r,k) is regular for all k: proof by induction on k.
Base case: k = 0:

• If x ∈ L(q,r,0), then δ̂ (q,w)≤ 0 for all proper prefixes w of x.
• But that means there are no proper prefixes of the word x.
• Therefore, |x|= 0 or 1.
• So all words in L(q,r,0) are of length 0 or 1.
• As our alphabet is finite, this implies L(q,r,0) is finite (and thus regular by an earlier Theorem).

3.34
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Inductive step
Induction step: k = n ≥ 1:

• Inductive hypothesis: L(q,r,k−1) is regular for all q and r.
• We must show that L(q,r,k) is regular.

– Let x be a word in L(q,r,k).

– If the path from q to r for x never touches the state k, then x ∈ L(q,r,k−1).

q r

k

1 . . . k − 1

3.35

Inductive step, continued

• Otherwise: k is on the path from q to r for x.
• Then there is a first and a last time we are in state k. Between the first and last time, we are only

in states 1, . . . ,k, regardless of whether q> k or r > k.

q r

k

1 . . . k − 1

3.36

Inductive step, finished
So we can divide x into:

• The part from q to k the first time,
• The first loop (if any) from k to k,
• The next loop from k to k,
• . . .
• The last loop from k to k,
• and the part from k to r.

Words divided in this way are exactly the words in L(q,r,k) that include state k on their state path.
This set of words is L(q,k,k−1)(L(k,k,k−1))∗L(k,r,k−1).

So the language L(q,r,k) is the union of two languages:

• L(q,r,k−1), which we know is regular by the induction hypothesis, and
• L(q,k,k−1)(L(k,k,k−1))∗L(k,r,k−1), which is the concatenation of three languages (each

of which is regular by the induction hypothesis), and thus is also regular.

Hence L(q,r,k) is regular. 3.37
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Wrapping it up
We are done, but that may not be obvious yet.

• We proved that L(q,r,k) is regular for all k.
• We noted that L(q,r) = L(q,r,n), so L(q,r) is always regular for any q,r ∈ Q.
• Therefore L(q0,r) is regular for any r ∈ F .
• Thus

⋃
r∈F L(q0,r) is regular (as it is the union of a finite number of regular languages).

• But L(M) =
⋃

r∈F L(q0,r) is therefore regular.

So L(M) is regular! (Again, how long is the expression for L(q0,r)?) 3.38

Quite an achievement
This is the end of the proof of Kleene’s Theorem:

• Given a DFA, we have shown that its language is regular.
• Given a regular language, we can produce an ε-NFA which recognizes it.
• NFAs and ε-NFAs have the same computing power as DFAs.

Next module: the boundaries of regular languages, and closure rules for them. 3.39
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