
Module 4
Properties of regular languages
Not everything is regular.
CS 360: Introduction to the Theory of Computing

Collin Roberts, University of Waterloo
4.1

Topics for Module 4

• Proving languages non-regular: the Pumping Lemma
• Closure rules for regular languages
• Algorithms for decision problems about finite automata and regular languages.

4.2

1 Non-regular languages
Where are we?

• We have given definitions for regular languages, and shown their strong connection to
FAs.

• If we apply certain operations to regular languages, we get back a regular language.
• Are all languages regular?

– Obviously no: we are going to have 8 more weeks in the term, and we are getting
to the end of regular languages.

– In this section, we will think more about what makes a language regular.
4.3

Non-regular languages

• By Kleene’s Theorem, a language L is not regular if for every DFA M, L ̸= L(M).
• So if we characterize languages of DFAs (that is, regular languages) very carefully,

maybe we can also characterize those languages that are not regular.

How does a DFA M work?
• Suppose it has n states.
• Consider a word x in L(M) with |x| ≥ n.
• On its path from q0 to an accept state, it must repeat a state somewhere along the

path.
– (Why? There are only n states in total, and the machine starts out in one of

them, then reads ≥ n input characters.)
– Arguments of this type use the pigeonhole principle.

4.4

1

Decompose the word into parts
Let’s say that we repeat state r.
• Then the word x can be decomposed: x = uvw, where:

– u = the part from q0 to the first time we reach r (i.e. after processing u, we are
in state r).

– v = the loop from r to itself (i.e. after processing v, we are again in state r).
– w = The part from the second time we reach r that leads us to an accept state
– Note: it is possible that either u or w is ε, but v cannot be ε.

• This decomposition is possible for any word x in L(M) with |x| ≥ n.
• Fact: uvvw is also in L(M). Why?

– vv also takes M from r back to itself: δ̂ (r,vv) = r.
• Another word in L(M) is uw = uv0w.
• We can show (by induction) that uv∗w ⊆ L(M).

4.5

More about regular languages
We can decompose any word x in L(M) of length at least n this way.
• If we choose the first time a state is repeated, then |uv| ≤ n.

– Why? The machine has n states, so we must have the first repeated state by the
nth step.)

• And |v| ≥ 1, since it is a DFA, and therefore has no ε-transitions.
Let’s formalize this:

• Given a DFA M with n states, and a word x in L(M), with |x| ≥ n, x can be decomposed
as x = uvw, where

– |uv| ≤ n,
– |v| ≥ 1 and
– uv∗w ⊆ L(M).

4.6

Pumping lemma
This fact is sometimes called the “Pumping Lemma”:
• We can pump out many copies of v, and uvvvvvvvvvvvw is still part of L(M).

It can be seen as a statement about regular languages.
• Every regular language L is accepted by a DFA.
• For a given regular language L, there exists some smallest DFA (i.e. with the fewest

states), M, that accepts L. Let’s say M has n states.
• Therefore there is some n such that we can make the above statement about M. 4.7

Formal Pumping Lemma
For every regular language L, there exists some positive integer n such that all words x ∈ L

with |x| ≥ n can be decomposed into x = uvw, where:
• |uv| ≤ n,
• v ̸= ε , and
• uviw ∈ L for all non-negative integers i.
You can think of n as being the number of states in a machine accepting L.
Again, this describes all long words in a regular language:
• For some definition of “long”, all long words can be pumped.
• Note that, if L is finite (and therefore regular), then taking any n > maxx∈L{|x|} works

(because with such an n, L contains no long words).
4.8

2

Non-regular languages
We know something about regular languages: long words can be pumped.
Now let’s describe some non-regular languages:
• Suppose that we have a language L.
• Suppose that no matter how we define “long”, there are still long words in L that

cannot be pumped.
• Then L is not regular, because all regular languages have a definition of “long” for

which all long words can be pumped. 4.9

Formally
• Let L be a language.
• Suppose that for any positive integer n:

– There exists a word x ∈ L with |x| ≥ n such that
– for any decomposition of x into x = uvw, with |uv| ≤ n and v ̸= ε,
– uv∗w is not a subset of L.

• Then L is not a regular language.
That is a pile of negations and existences. 4.10

Again, the basis of the Pumping Lemma
• Language L is regular if it is accepted by some DFA.
• Suppose L is accepted by a DFA, M, with n states.
• Any word x ∈ L with at least n letters includes a state cycle: some state r appears two

times.
• This reuse of r corresponds to a substring v of x, so x = uvw. When we start v in state

r, we also end in state r: δ̂ (r,v) = r.
• If we got to the start of v (by reading in u), went through the cycle twice, and then

finished with w we would wind up at the same accept state in M. So uvvw and uvvvw,
and all of uv∗w is in L. 4.11

Explaining Pumping Lemma proofs of non-regularity
Now, what about using the Pumping Lemma to prove a language L is not regular?
• “Suppose that for any value of n > 0, there exists a word x ∈ L with |x| ≥ n”... (If there

is always a long word in L)
• “such that for any decomposition of x into x = uvw, with |uv| ≤ n and v ̸= ε” ... (that

cannot be decomposed into three parts where the first 2 parts are not long and the
middle part is non-trivial)

• “uv∗w ̸⊆ L.”... (and the second part cannot be pumped,)
• Then L is not a regular language. 4.12

An example
Let’s show an example:
• Theorem: L= {0i1i|i≥ 0}= {ε,01,0011,000111,00001111, . . .} is not a regular language.

Proof:
• For any n > 0, choose a word x ∈ L whose length is at least n.
• We will choose x = 0n1n. This is our long word.
• Now, consider all decompositions x = uvw, where |uv| ≤ n, and v ̸= ε.
• Fact: for any such decomposition, uv = 0k for some 0 < k ≤ n, because the first n

characters of x = uvw are all 0 (by the definition of x).
• Now, we must show that because of what we found, uv∗w is not a subset of L. In

particular, we must find an i ≥ 0 such that uviw ̸∈ L. (Typically, i = 0 or i = 2.)
• Let i = 0. Recall that v is all 0’s. Then uv0w will have fewer 0’s than 1’s. So uv0w ̸∈ L.
• And hence the language L is not regular. 4.13

3

Again, how did that work?
Pumping lemma: to prove languages are not regular.
• For any definition of long, find a long word:

Long: length ≥ n. Our long word was x = 0n1n.
• Consider all breakdowns of x into x = uvw, where uv is short and v ̸= ε.

For the long word x, if x = uvw, and uv is short, then uv is all 0’s.
• If for all of these breakdowns x = uvw, we cannot pump v, then L is not regular.

No matter what v is, it must be all 0’s. So if we pump v, then uvvw or uw both have
the wrong number of 0’s. So L is not regular.

• We can also prove L is not regular by thinking of possible DFAs for L and showing that
they cannot exist.

• This is hard in general. The Pumping Lemma is better.
4.14

Another example
We saw that {0i1i|i ≥ 0} is not regular.
Another case:
Theorem: The language L = {0p|p is a prime } is not regular.
• (This language includes 00,000,00000,0000000,00000000000, . . .)
• Proof by Pumping Lemma. (Assume that there are infinitely many primes. There are

many nice proofs of this fact.)
– Choose a value of n > 0.
– Choose x = 0p, for a prime p ≥ n.
– Then x is a long word in L.
– Now we must argue that no decomposition of x can be pumped.

4.15

Why can we not pump the primes?
So x = 0p, for p ≥ n, p a prime.
Consider all decompositions x = uvw, where |uv| ≤ n and v ̸= ε.
• Then v = 0k for some 1 ≤ k ≤ n.
• And uv∗w = {0p−k,0p,0p+k,0p+2k, . . .}.
• Is it possible that all of these are in L?
• No. One member of uv∗w is 0p+(pk); it is the (p+2)th member in the above list.
• This word is not a member of L, since p+ pk = (1+ k)p is composite (both factors are

non-trivial, as k ≥ 1).
For any n, we can find a long word, such that all decompositions of it cannot be pumped.
Therefore L is not regular. 4.16

Another example: palindromes
L = {s | s = sR} (This is the language of palindromes.)
• Examples: 0110,01110,ε,1111, etc.

L is not regular.
Proof by Pumping Lemma.
• Given a value of n > 0, find a word in L of length at least n.
• How about x = 0n10n?
• Now, consider all decompositions of this into x = uvw, where uv is short and v is not ε.
• Again, v must be 0i for some 1 ≤ i ≤ n.
• And the number of 0’s before the only 1 in uv2w is more than the number after it, so

it cannot be a palindrome.
• So we cannot pump x, regardless of our choice of decomposition.
• So L is not regular.

4.17

4

One more example
Let L = {y!z | |y|> |z|,y,z ∈ {0,1}∗}.
• Σ = {0,1, !}

This language includes words like 111!00,1!,10001!111. Fact: L is not regular.
Proof by Pumping Lemma.
• Consider a value n > 0.
• The string x = 0n!0n−1 is long, and in L.
• We will show that uv0w is not in the language.

– Decompose x = uvw with uv of length at most n and nonempty v.
– For all such decompositions, v = 0k for some k ≥ 1.
– And uv0w = 0n−k!0n−1.
– This is not a word in L: the part before the ! character is too short.
– So v is not pumpable, no matter how we do it.

• L is not regular. 4.18

What can go wrong?
It is easy to misuse the Pumping Lemma.
• The existence of one bad decomposition of x does not matter.
• We must show that all decompositions of x = uvw with |uv| ≤ n and v ̸= ε cannot be

pumped.
Example:

• Obviously, L = (01)∗ is regular.
• For any value of n > 0, (01)n is a long word in L.
• Decompose into u = 0,v = 1,w = (01)n−1.
• Then uv2w = 011(01)n−1 is not in L.
• So we conclude that L is not regular (?!?!?)

Clearly we have done something wrong!
• Problem: We must show that no decomposition can be pumped.
• The decomposition u = ε,v = 01,w = (01)n−1 is pumpable. 4.19

More Pumping Lemma: pitfalls
• The Pumping Lemma:

– Long words in regular languages can be pumped.
• Its contrapositive:

– If a language has long words that cannot be pumped, it is not regular.
• Note: the theorem does not give a definition of regular languages. The following is not

true:
– If all long words in a language can be pumped, it is regular.

• In fact, some non-regular languages can be pumped. 4.20

2 Closure properties for regular languages
Closure rules

Regular languages are closed under ∗, union and concatenation. This is by definition:
• A class of languages is closed under a binary operation if applying that operation to 2

languages in the class always yields a language in the class
• A class of languages is closed under a unary operation if applying that operation to

one language in the class always yields a language in the class.
Subsets of regular languages are not necessarily regular: (0+ 1)∗ = Σ∗ is regular, so any
language over Σ = {0,1} is the subset of a regular language! We just saw examples of
languages over Σ which are not regular. 4.21

5

More closure rules
Regular languages are also closed under complement and intersection.
Theorem: If language L is regular, then so is its complement, L′.
Proof:
• Proof by Kleene’s theorem.
• Since L is regular, it is the language of a DFA, M, with state set Q and accept states

F ⊆ Q.
• Construct a new DFA, M′ from M, as follows.
• Swap the accept and reject states in M.
• Then M′, with accept set Q\F accepts all words which the old DFA, M, rejected and

rejects all words which M accepted.
• M is a DFA, so there is only one path for a particular word.
• The same is true for M′, so M′ is a new DFA.
• M′ accepts L′.
• By Kleene’s theorem, L′ is regular.

(This is much easier than exhibiting a regular expression for L′.) 4.22

Regular languages are closed under intersection
Theorem: If L1 and L2 are regular languages, then so is L1 ∩L2.
Proof:
• This can be proved in lots of ways.
• One easy one: L1 ∩L2 = (L′

1 ∪L′
2)

′.
(That can take a couple seconds to understand! Draw a suitable Venn diagram if it
helps.)

• And L′
1 is regular (by our last theorem); so is L′

2.
• By the definition of regular languages, so is L′

1 ∪L′
2.

• And again, by our closure theorem, so is (L′
1 ∪L′

2)
′ = L1 ∩L2.

4.23

Or, by actually building a DFA
Theorem: Given regular languages L1 and L2, L = L1 ∩L2 is also regular.
Proof sketch:
• Let M1 and M2 be machines accepting L1 and L2 respectively.
• New machine M: one state for each pair of states in M1 and M2.

– If M1 is in state q, and M2 is in state r, then M will be in (q,r).
– If M1 transitions from q to q′ and M2 from r to r′ on letter a, then in M,

δM((q,r),a) = (q′,r′).
– Accept states are those that come from accept states in both machines.

q

r

M1

M2

a

a
M(q, r) a

(q�, r�)

q�

r�

4.24

6

Closure under reversal
Recall: wR is the reversal of the word w.
Given a language L, let LR be the language that consists of all of the words of L, reversed.
Theorem: If L is regular, then so is LR.
Proof sketch: Let M be a finite automaton whose language is L. Make a new finite

automaton R with the same states as M, plus a new start state:
• All of the edges of R are the reversals of the edges of M.
• The sole accept state of R is the start state of M.
• The start state of R has an ε-transition to each accept state of M.

Then R reverses the automaton M: if we start at an accept state of M and work our way
back to the start state of M (i.e. if M accepted x), then the new machine R accepts the word
xR, and vice versa. 4.25

Closure under reversal
Suppose we have the following DFA, M ONMLHIJKq1

0 //

1

��
55

55
55

55
55

55
5

ONMLHIJKGFED@ABCq2

0,1

WW

// ONMLHIJKq0

1
::vvvvvvvv

0 $$H
HH

HH
HH

H ONMLHIJKGFED@ABCq3

0,1

�� ONMLHIJKq4

0,1

��

to accept the language

L = {w | w begins with 0 or with 10}.

4.26

Closure under reversal
The construction yields this ε-NFA, R

ONMLHIJKq1

1

zzvv
vv
vv
vv

ONMLHIJKq2
0oo

0,1

WWONMLHIJKGFED@ABCq0 ONMLHIJKq5

EDGF ε

��

BC@A
ε

OO

oo

ONMLHIJKq3

0,1

��0

ddHHHHHHHH ONMLHIJKq4

0,1

��

1

ZZ5555555555555

to accept the language
L = {w | w ends with 0 or with 01}.

Note that, although this ε-NFA R can be simplified, the construction is still correct. 4.27

Properly proving the reversal of a regular language is regular
We can prove this theorem by structural induction on the construction of the regular

language L.
• Base cases: If L = /0,{ε} or {a} ,then LR = L is regular.

7

• If L = L1 ∪L2 for regular languages L1 and L2, then LR = LR
1 ∪LR

2 , and both of these
languages are regular by induction.

• If L = L1L2 for regular languages L1 and L2, then LR = LR
2 LR

1 , and this is the concatena-
tion of two regular languages and hence regular.

• If L = L∗
1, then LR =

(
LR

1
)∗, since any word in L is the concatenation of a finite sequence

of words of L1: if w ∈ L, w = w1 . . .wn, and wR = wR
n . . .w

R
1 . This is a sequence of words

in LR
1 , and so LR is the Kleene closure of the (by the induction hypothesis) regular

language LR
1 .

4.28

3 Decision problems for regular languages
Algorithmic questions about finite automata

We do not normally create algorithms in this class. Here is an exception:
Is it possible to find algorithms for the following:
• Given a DFA M and a word x, does M accept x?
• Given a DFA M, is L(M) empty?
• Given a DFA M, is L(M) infinite?
• Given two DFAs M1 and M2, is L(M1)∩L(M2) empty?
• Given two DFAs M1 and M2, is L(M1)⊆ L(M2)?
• Given two DFAs M1 and M2, is L(M1) = L(M2)?
• Given two regular expressions e1 and e2, do they generate the same language?

4.29

Acceptance, empty language
• Given a DFA M and a word x, does M accept x?

– Just simulate the DFA.
– (This may seem obvious. But we will not be able to do this for Turing machines.)

• Given a DFA M, is L(M) empty?
More fun.

– Suppose M has n states.
– If M accepts any words, it must accept a word with fewer than n letters.
– This is a consequence of the proof of the Pumping Lemma.
– We prove it carefully on the next slide.

4.30

Acceptance, empty language
Lemma: If a DFA, M, having n states accepts any words, then it must accept a word with
fewer than n letters.
Proof:

• Assume L(M) ̸= /0.
• By Kleene’s Theorem, L(M) is regular.
• Let x0 ∈ L(M) be arbitrary.
• If |x0|< n, then we are finished.
• Otherwise, |x0| ≥ n and by the proof of the Pumping Lemma, we can decompose x0 =

u0v0w0, with u0w0 ∈ L(M) and |v0| ≥ 1.
• If |u0w0|< n, then we are finished.
• Otherwise, |u0w0| ≥ n and u0w0 ∈ L(M) and so by the proof of the Pumping Lemma,

we can decompose u0w0 = u1v1w1, with u1w1 ∈ L(M) and |v1| ≥ 1.
• Continuing in this way we obtain a sequence of words in L(M) having strictly decreasing

lengths: x0,u0w0,u1w1, . . . ,u jw j,
• As x0 has finite length, after at most |x0|−n+1 steps, we will obtain a word in L(M)

with length < n. □
4.31

8

Acceptance, empty language
Now, back to the question
• Given a DFA M, is L(M) empty?

– Try every word of length less than n (finitely many since our alphabet is finite).
– If no short word is accepted, then by the previous Lemma, L(M) = /0. 4.32

Is the language of an FA finite?
• Given a DFA M, is L(M) infinite?

Theorem: If M is a DFA with n states, then L(M) is infinite if and only if L(M) includes
a word x satisfying n ≤ |x|< 2n.
Proof:

– Suppose x ∈ L(M) and n ≤ |x|< 2n.
– From the Pumping Lemma, x must be pumpable.
– The word x = uvw can be used to generate the infinite language uv∗w, which is a

subset of L(M).
– So L(M) is infinite.

4.33

Other half of the proof
• Other direction: Assume that L(M) is infinite.

– For a contradiction, suppose that there does not exist any x ∈ L(M) satisfying
n ≤ |x|< 2n.

– In other words, every word x ∈ L(M) with length at least n must have length at
least 2n.

– Let x ∈ L(M) be a shortest word with length at least n (so that |x| ≥ 2n by the
above point).

– (If there is no x ∈ L(M) with length at least n, then L(M) is finite, which cannot
happen.)

– Decompose x = uvw, where v ̸= ε and |uv| ≤ n, so that 1 ≤ |v| ≤ n.
– By the Pumping Lemma, uw is also in L(M).
– We have only removed at most n letters by removing v, so |uw| ≥ n, and by

construction, |uw|< |x|.
– Thus uw violates the choice of x as a shortest word in L(M) with length at least n.
– This contradiction completes the proof.

• If L(M) is infinite, we must have a word in L(M) with length between n and 2n.
• To see if L(M) is infinite, check all words between n and 2n in length.
• This runs in a finite amount of time. 4.34

Disjoint languages, subset
• Given two DFAs M1 and M2, is L(M1)∩L(M2) empty?

– First, construct a DFA for L(M1)∩L(M2).
– Then use the algorithm for testing for an empty language of an FA to see if it

accepts the empty language.
• Given two DFAs M1 and M2, is L(M1)⊆ L(M2)?

– If so, then L(M2)
′∩L(M1) is empty.

(There is nothing in L(M1) that is not in L(M2).)
– Build the DFA for L(M2)

′.
– Use it to build the DFA for L(M2)

′∩L(M1).
– Use the algorithm from before to test if its language is empty! 4.35

9

Two FAs with the same language

• Given two DFAs M1 and M2, is L(M1) = L(M2)?
– Yes, if L(M1)⊆ L(M2) and L(M2)⊆ L(M1) .
– Use the algorithm for testing for subset twice.

• Given two regular expressions e1 and e2, do they represent the same language?
– Construct the DFAs for each regular expression, using Kleene’s Theorem.
– Then use the algorithm for testing if two FAs have the same language.

(If you like this kind of stuff, take CS 462.) 4.36

4 End of regular language unit
End of regular language unit

Is a DFA a decent model of a computer?
• Yes, if resources are bounded.
• Regular languages: accepted by computers with very simple access to input and very

little memory
• But {0i1i | i ≥ 0} is a simple language. And yet no DFA can recognize it.

Except:
• Real computers have finite memory.
• Suppose a computer has q bits of memory.
• The computer can only be in 2q possible states.

Often, we do not care, because that number is so huge.
Typically, we treat computers as having infinite memory, except when it really matters.
Next: Context-free languages (Module 5)
After that: Computers with infinite memory (Module 6) 4.37

10

	Non-regular languages
	Closure properties for regular languages
	Decision problems for regular languages
	End of regular language unit

