Module 4 Properties of regular languages

Not everything is regular.
CS 360: Introduction to the Theory of Computing

Collin Roberts, University of Waterloo

Topics for Module 4

- Proving languages non-regular: the Pumping Lemma
- Closure rules for regular languages
- Algorithms for decision problems about finite automata and regular languages.

1 Non-regular languages

Where are we?

- We have given definitions for regular languages, and shown their strong connection to FAs.
- If we apply certain operations to regular languages, we get back a regular language.
- Are all languages regular?
- Obviously no: we are going to have 8 more weeks in the term, and we are getting to the end of regular languages.
- In this section, we will think more about what makes a language regular.

Non-regular languages

- By Kleene's Theorem, a language L is not regular if for every DFA $M, L \neq L(M)$.
- So if we characterize languages of DFAs (that is, regular languages) very carefully, maybe we can also characterize those languages that are not regular.

How does a DFA M work?

- Suppose it has n states.
- Consider a word x in $L(M)$ with $|x| \geq n$.
- On its path from q_{0} to an accept state, it must repeat a state somewhere along the path.
- (Why? There are only n states in total, and the machine starts out in one of them, then reads $\geq n$ input characters.)
- Arguments of this type use the pigeonhole principle.

Decompose the word into parts
Let's say that we repeat state r.

- Then the word x can be decomposed: $x=u v w$, where:
$-u=$ the part from q_{0} to the first time we reach r (i.e. after processing u, we are in state r).
$-v=$ the loop from r to itself (i.e. after processing v, we are again in state r).
$-w=$ The part from the second time we reach r that leads us to an accept state
- Note: it is possible that either u or w is ε, but v cannot be ε.
- This decomposition is possible for any word x in $L(M)$ with $|x| \geq n$.
- Fact: $u v v w$ is also in $L(M)$. Why?
- $v v$ also takes M from r back to itself: $\hat{\boldsymbol{\delta}}(r, v v)=r$.
- Another word in $L(M)$ is $u w=u v^{0} w$.
- We can show (by induction) that $u v^{*} w \subseteq L(M)$.

More about regular languages
We can decompose any word x in $L(M)$ of length at least n this way.

- If we choose the first time a state is repeated, then $|u v| \leq n$.
- Why? The machine has n states, so we must have the first repeated state by the nth step.)
- And $|v| \geq 1$, since it is a DFA, and therefore has no ε-transitions.

Let's formalize this:

- Given a DFA M with n states, and a word x in $L(M)$, with $|x| \geq n, x$ can be decomposed as $x=u v w$, where
$-|u v| \leq n$,
$-|v| \geq 1$ and
$-u v^{*} w \subseteq L(M)$.

Pumping lemma
This fact is sometimes called the "Pumping Lemma":

- We can pump out many copies of v, and $u v \nu v v \nu v \nu v v \nu v w$ is still part of $L(M)$.

It can be seen as a statement about regular languages.

- Every regular language L is accepted by a DFA.
- For a given regular language L, there exists some smallest DFA (i.e. with the fewest states), M, that accepts L. Let's say M has n states.
- Therefore there is some n such that we can make the above statement about M. \qquad
Formal Pumping Lemma
For every regular language L, there exists some positive integer n such that all words $x \in L$ with $|x| \geq n$ can be decomposed into $x=u v w$, where:
- $|u v| \leq n$,
- $v \neq \varepsilon$, and
- $u v^{i} w \in L$ for all non-negative integers i.

You can think of n as being the number of states in a machine accepting L.
Again, this describes all long words in a regular language:

- For some definition of "long", all long words can be pumped.
- Note that, if L is finite (and therefore regular), then taking any $n>\max _{x \in L}\{|x|\}$ works (because with such an n, L contains no long words).

Non-regular languages
We know something about regular languages: long words can be pumped.
Now let's describe some non-regular languages:

- Suppose that we have a language L.
- Suppose that no matter how we define "long", there are still long words in L that cannot be pumped.
- Then L is not regular, because all regular languages have a definition of "long" for which all long words can be pumped.

Formally

- Let L be a language.
- Suppose that for any positive integer n :
- There exists a word $x \in L$ with $|x| \geq n$ such that
- for any decomposition of x into $x=u v w$, with $|u v| \leq n$ and $v \neq \varepsilon$,
- $u v^{*} w$ is not a subset of L.
- Then L is not a regular language.

That is a pile of negations and existences.
Again, the basis of the Pumping Lemma

- Language L is regular if it is accepted by some DFA.
- Suppose L is accepted by a DFA, M, with n states.
- Any word $x \in L$ with at least n letters includes a state cycle: some state r appears two times.
- This reuse of r corresponds to a substring v of x, so $x=u v w$. When we start v in state r, we also end in state $r: \hat{\boldsymbol{\delta}}(r, v)=r$.
- If we got to the start of v (by reading in u), went through the cycle twice, and then finished with w we would wind up at the same accept state in M. So $u v v w$ and $u v v v w$, and all of $u v^{*} w$ is in L.

Explaining Pumping Lemma proofs of non-regularity
Now, what about using the Pumping Lemma to prove a language L is not regular?

- "Suppose that for any value of $n>0$, there exists a word $x \in L$ with $|x| \geq n " \ldots$ (If there is always a long word in L)
- "such that for any decomposition of x into $x=u v w$, with $|u v| \leq n$ and $v \neq \varepsilon$ "... (that cannot be decomposed into three parts where the first 2 parts are not long and the middle part is non-trivial)
- " $u v^{*} w \nsubseteq L . " .$. (and the second part cannot be pumped,)
- Then L is not a regular language.

An example
Let's show an example:

- Theorem: $L=\left\{0^{i} 1^{i} \mid i \geq 0\right\}=\{\varepsilon, 01,0011,000111,00001111, \ldots\}$ is not a regular language. Proof:
- For any $n>0$, choose a word $x \in L$ whose length is at least n.
- We will choose $x=0^{n} 1^{n}$. This is our long word.
- Now, consider all decompositions $x=u v w$, where $|u v| \leq n$, and $v \neq \varepsilon$.
- Fact: for any such decomposition, $u v=0^{k}$ for some $0<k \leq n$, because the first n characters of $x=u v w$ are all 0 (by the definition of x).
- Now, we must show that because of what we found, $u v^{*} w$ is not a subset of L. In particular, we must find an $i \geq 0$ such that $u v^{i} w \notin L$. (Typically, $i=0$ or $i=2$.)
- Let $i=0$. Recall that v is all 0 's. Then $u v^{0} w$ will have fewer 0 's than 1 's. So $u v^{0} w \notin L$.
- And hence the language L is not regular.

Again, how did that work?
Pumping lemma: to prove languages are not regular.

- For any definition of long, find a long word:

Long: length $\geq n$. Our long word was $x=0^{n} 1^{n}$.

- Consider all breakdowns of x into $x=u v w$, where $u v$ is short and $v \neq \varepsilon$. For the long word x, if $x=u v w$, and $u v$ is short, then $u v$ is all 0 's.
- If for all of these breakdowns $x=u v w$, we cannot pump v, then L is not regular.

No matter what v is, it must be all 0's. So if we pump v, then $u v v w$ or $u \mathrm{w}$ both have the wrong number of 0 's. So L is not regular.

- We can also prove L is not regular by thinking of possible DFAs for L and showing that they cannot exist.
- This is hard in general. The Pumping Lemma is better.

Another example
We saw that $\left\{0^{i} 1^{i} \mid i \geq 0\right\}$ is not regular.
Another case:
Theorem: The language $L=\left\{0^{p} \mid p\right.$ is a prime $\}$ is not regular.

- (This language includes $00,000,00000,0000000,00000000000, \ldots$)
- Proof by Pumping Lemma. (Assume that there are infinitely many primes. There are many nice proofs of this fact.)
- Choose a value of $n>0$.
- Choose $x=0^{p}$, for a prime $p \geq n$.
- Then x is a long word in L.
- Now we must argue that no decomposition of x can be pumped.

Why can we not pump the primes?
So $x=0^{p}$, for $p \geq n, p$ a prime.
Consider all decompositions $x=u v w$, where $|u v| \leq n$ and $v \neq \varepsilon$.

- Then $v=0^{k}$ for some $1 \leq k \leq n$.
- And $u v^{*} w=\left\{0^{p-k}, 0^{p}, 0^{p+k}, 0^{p+2 k}, \ldots\right\}$.
- Is it possible that all of these are in L ?
- No. One member of $u v^{*} w$ is $0^{p+(p k)}$; it is the $(p+2)^{t h}$ member in the above list.
- This word is not a member of L, since $p+p k=(1+k) p$ is composite (both factors are non-trivial, as $k \geq 1$).
For any n, we can find a long word, such that all decompositions of it cannot be pumped. Therefore L is not regular.

Another example: palindromes
$L=\left\{s \mid s=s^{R}\right\}$ (This is the language of palindromes.)

- Examples: $0110,01110, \varepsilon, 1111$, etc.
L is not regular.
Proof by Pumping Lemma.
- Given a value of $n>0$, find a word in L of length at least n.
- How about $x=0^{n} 10^{n}$?
- Now, consider all decompositions of this into $x=u v w$, where $u v$ is short and v is not ε.
- Again, v must be 0^{i} for some $1 \leq i \leq n$.
- And the number of 0 's before the only 1 in $u v^{2} w$ is more than the number after it, so it cannot be a palindrome.
- So we cannot pump x, regardless of our choice of decomposition.
- So L is not regular.

One more example
Let $L=\left\{y!z| | y\left|>|z|, y, z \in\{0,1\}^{*}\right\}\right.$.

- $\Sigma=\{0,1,!\}$

This language includes words like $111!00,1!, 10001!111$. Fact: L is not regular.
Proof by Pumping Lemma.

- Consider a value $n>0$.
- The string $x=0^{n}!0^{n-1}$ is long, and in L.
- We will show that $u v^{0} w$ is not in the language.
- Decompose $x=u v w$ with $u v$ of length at most n and nonempty v.
- For all such decompositions, $v=0^{k}$ for some $k \geq 1$.
- And $u v^{0} w=0^{n-k}!0^{n-1}$.
- This is not a word in L : the part before the ! character is too short.
- So v is not pumpable, no matter how we do it.
- L is not regular. \qquad
What can go wrong?
It is easy to misuse the Pumping Lemma.
- The existence of one bad decomposition of x does not matter.
- We must show that all decompositions of $x=u v w$ with $|u v| \leq n$ and $v \neq \varepsilon$ cannot be pumped.
Example:
- Obviously, $L=(01)^{*}$ is regular.
- For any value of $n>0,(01)^{n}$ is a long word in L.
- Decompose into $u=0, v=1, w=(01)^{n-1}$.
- Then $u v^{2} w=011(01)^{n-1}$ is not in L.
- So we conclude that L is not regular (?!?!?)

Clearly we have done something wrong!

- Problem: We must show that no decomposition can be pumped.
- The decomposition $u=\varepsilon, v=01, w=(01)^{n-1}$ is pumpable.

More Pumping Lemma: pitfalls

- The Pumping Lemma:
- Long words in regular languages can be pumped.
- Its contrapositive:
- If a language has long words that cannot be pumped, it is not regular.
- Note: the theorem does not give a definition of regular languages. The following is not true:
- If all long words in a language can be pumped, it is regular.
- In fact, some non-regular languages can be pumped.

2 Closure properties for regular languages

Closure rules
Regular languages are closed under $*$, union and concatenation. This is by definition:

- A class of languages is closed under a binary operation if applying that operation to 2 languages in the class always yields a language in the class
- A class of languages is closed under a unary operation if applying that operation to one language in the class always yields a language in the class.
Subsets of regular languages are not necessarily regular: $(0+1)^{*}=\Sigma^{*}$ is regular, so any language over $\Sigma=\{0,1\}$ is the subset of a regular language! We just saw examples of languages over Σ which are not regular.

More closure rules
Regular languages are also closed under complement and intersection.
Theorem: If language L is regular, then so is its complement, L^{\prime}.
Proof:

- Proof by Kleene's theorem.
- Since L is regular, it is the language of a DFA, M, with state set Q and accept states $F \subseteq Q$.
- Construct a new DFA, M^{\prime} from M, as follows.
- Swap the accept and reject states in M.
- Then M^{\prime}, with accept set $Q \backslash F$ accepts all words which the old DFA, M, rejected and rejects all words which M accepted.
- M is a DFA, so there is only one path for a particular word.
- The same is true for M^{\prime}, so M^{\prime} is a new DFA.
- M^{\prime} accepts L^{\prime}.
- By Kleene's theorem, L^{\prime} is regular.
(This is much easier than exhibiting a regular expression for L^{\prime}.)
Regular languages are closed under intersection
Theorem: If L_{1} and L_{2} are regular languages, then so is $L_{1} \cap L_{2}$.
Proof:
- This can be proved in lots of ways.
- One easy one: $L_{1} \cap L_{2}=\left(L_{1}^{\prime} \cup L_{2}^{\prime}\right)^{\prime}$.
(That can take a couple seconds to understand! Draw a suitable Venn diagram if it helps.)
- And L_{1}^{\prime} is regular (by our last theorem); so is L_{2}^{\prime}.
- By the definition of regular languages, so is $L_{1}^{\prime} \cup L_{2}^{\prime}$.
- And again, by our closure theorem, so is $\left(L_{1}^{\prime} \cup L_{2}^{\prime}\right)^{\prime}=L_{1} \cap L_{2}$.

Or, by actually building a DFA
Theorem: Given regular languages L_{1} and $L_{2}, L=L_{1} \cap L_{2}$ is also regular.
Proof sketch:

- Let M_{1} and M_{2} be machines accepting L_{1} and L_{2} respectively.
- New machine M : one state for each pair of states in M_{1} and M_{2}.
- If M_{1} is in state q, and M_{2} is in state r, then M will be in (q, r).
- If M_{1} transitions from q to q^{\prime} and M_{2} from r to r^{\prime} on letter a, then in M, $\delta_{M}((q, r), a)=\left(q^{\prime}, r^{\prime}\right)$.
- Accept states are those that come from accept states in both machines.

Closure under reversal
Recall: w^{R} is the reversal of the word w.
Given a language L, let L^{R} be the language that consists of all of the words of L, reversed.
Theorem: If L is regular, then so is L^{R}.
Proof sketch: Let M be a finite automaton whose language is L. Make a new finite automaton R with the same states as M, plus a new start state:

- All of the edges of R are the reversals of the edges of M.
- The sole accept state of R is the start state of M.
- The start state of R has an ε-transition to each accept state of M.

Then R reverses the automaton M : if we start at an accept state of M and work our way back to the start state of M (i.e. if M accepted x), then the new machine R accepts the word x^{R}, and vice versa.

Closure under reversal
Suppose we have the following DFA, M

to accept the language

$$
L=\{w \mid w \text { begins with } 0 \text { or with } 10\}
$$

Closure under reversal
The construction yields this ε-NFA, R

to accept the language

$$
L=\{w \mid w \text { ends with } 0 \text { or with } 01\} .
$$

Note that, although this ε-NFA R can be simplified, the construction is still correct.
Properly proving the reversal of a regular language is regular
We can prove this theorem by structural induction on the construction of the regular language L.

- Base cases: If $L=\emptyset,\{\varepsilon\}$ or $\{a\}$, then $L^{R}=L$ is regular.
- If $L=L_{1} \cup L_{2}$ for regular languages L_{1} and L_{2}, then $L^{R}=L_{1}^{R} \cup L_{2}^{R}$, and both of these languages are regular by induction.
- If $L=L_{1} L_{2}$ for regular languages L_{1} and L_{2}, then $L^{R}=L_{2}^{R} L_{1}^{R}$, and this is the concatenation of two regular languages and hence regular.
- If $L=L_{1}^{*}$, then $L^{R}=\left(L_{1}^{R}\right)^{*}$, since any word in L is the concatenation of a finite sequence of words of L_{1} : if $w \in L, w=w_{1} \ldots w_{n}$, and $w^{R}=w_{n}^{R} \ldots w_{1}^{R}$. This is a sequence of words in L_{1}^{R}, and so L^{R} is the Kleene closure of the (by the induction hypothesis) regular language L_{1}^{R}.

3 Decision problems for regular languages

Algorithmic questions about finite automata
We do not normally create algorithms in this class. Here is an exception:
Is it possible to find algorithms for the following:

- Given a DFA M and a word x, does M accept x ?
- Given a DFA M, is $L(M)$ empty?
- Given a DFA M, is $L(M)$ infinite?
- Given two DFAs M_{1} and M_{2}, is $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ empty?
- Given two DFAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?
- Given two DFAs M_{1} and M_{2}, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
- Given two regular expressions e_{1} and e_{2}, do they generate the same language?

Acceptance, empty language

- Given a DFA M and a word x, does M accept x ?
- Just simulate the DFA.
- (This may seem obvious. But we will not be able to do this for Turing machines.)
- Given a DFA M, is $L(M)$ empty?

More fun.

- Suppose M has n states.
- If M accepts any words, it must accept a word with fewer than n letters.
- This is a consequence of the proof of the Pumping Lemma.
- We prove it carefully on the next slide.

Acceptance, empty language
Lemma: If a DFA, M, having n states accepts any words, then it must accept a word with fewer than n letters.
Proof:

- Assume $L(M) \neq \emptyset$.
- By Kleene's Theorem, $L(M)$ is regular.
- Let $x_{0} \in L(M)$ be arbitrary.
- If $\left|x_{0}\right|<n$, then we are finished.
- Otherwise, $\left|x_{0}\right| \geq n$ and by the proof of the Pumping Lemma, we can decompose $x_{0}=$ $u_{0} v_{0} w_{0}$, with $u_{0} w_{0} \in L(M)$ and $\left|v_{0}\right| \geq 1$.
- If $\left|u_{0} w_{0}\right|<n$, then we are finished.
- Otherwise, $\left|u_{0} w_{0}\right| \geq n$ and $u_{0} w_{0} \in L(M)$ and so by the proof of the Pumping Lemma, we can decompose $u_{0} w_{0}=u_{1} v_{1} w_{1}$, with $u_{1} w_{1} \in L(M)$ and $\left|v_{1}\right| \geq 1$.
- Continuing in this way we obtain a sequence of words in $L(M)$ having strictly decreasing lengths: $x_{0}, u_{0} w_{0}, u_{1} w_{1}, \ldots, u_{j} w_{j}, \ldots$.
- As x_{0} has finite length, after at most $\left|x_{0}\right|-n+1$ steps, we will obtain a word in $L(M)$ with length $<n$.

Acceptance, empty language
Now, back to the question

- Given a DFA M, is $L(M)$ empty?
- Try every word of length less than n (finitely many since our alphabet is finite).
- If no short word is accepted, then by the previous Lemma, $L(M)=\emptyset$.

Is the language of an FA finite?

- Given a DFA M, is $L(M)$ infinite?

Theorem: If M is a DFA with n states, then $L(M)$ is infinite if and only if $L(M)$ includes a word x satisfying $n \leq|x|<2 n$.
Proof:

- Suppose $x \in L(M)$ and $n \leq|x|<2 n$.
- From the Pumping Lemma, x must be pumpable.
- The word $x=u v w$ can be used to generate the infinite language $u v^{*} w$, which is a subset of $L(M)$.
- So $L(M)$ is infinite.

Other half of the proof

- Other direction: Assume that $L(M)$ is infinite.
- For a contradiction, suppose that there does not exist any $x \in L(M)$ satisfying $n \leq|x|<2 n$.
- In other words, every word $x \in L(M)$ with length at least n must have length at least $2 n$.
- Let $x \in L(M)$ be a shortest word with length at least n (so that $|x| \geq 2 n$ by the above point).
- (If there is no $x \in L(M)$ with length at least n, then $L(M)$ is finite, which cannot happen.)
- Decompose $x=u v w$, where $v \neq \varepsilon$ and $|u v| \leq n$, so that $1 \leq|v| \leq n$.
- By the Pumping Lemma, $u w$ is also in $L(M)$.
- We have only removed at most n letters by removing v, so $|u w| \geq n$, and by construction, $|u w|<|x|$.
- Thus $u w$ violates the choice of x as a shortest word in $L(M)$ with length at least n.
- This contradiction completes the proof.
- If $L(M)$ is infinite, we must have a word in $L(M)$ with length between n and $2 n$.
- To see if $L(M)$ is infinite, check all words between n and $2 n$ in length.
- This runs in a finite amount of time.

Disjoint languages, subset

- Given two DFAs M_{1} and M_{2}, is $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ empty?
- First, construct a DFA for $L\left(M_{1}\right) \cap L\left(M_{2}\right)$.
- Then use the algorithm for testing for an empty language of an FA to see if it accepts the empty language.
- Given two DFAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?
- If so, then $L\left(M_{2}\right)^{\prime} \cap L\left(M_{1}\right)$ is empty.
(There is nothing in $L\left(M_{1}\right)$ that is not in $L\left(M_{2}\right)$.)
- Build the DFA for $L\left(M_{2}\right)^{\prime}$.
- Use it to build the DFA for $L\left(M_{2}\right)^{\prime} \cap L\left(M_{1}\right)$.
- Use the algorithm from before to test if its language is empty!

Two FAs with the same language

- Given two DFAs M_{1} and M_{2}, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
- Yes, if $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$ and $L\left(M_{2}\right) \subseteq L\left(M_{1}\right)$.
- Use the algorithm for testing for subset twice.
- Given two regular expressions e_{1} and e_{2}, do they represent the same language?
- Construct the DFAs for each regular expression, using Kleene's Theorem.
- Then use the algorithm for testing if two FAs have the same language.
(If you like this kind of stuff, take CS 462.)

4 End of regular language unit

End of regular language unit
Is a DFA a decent model of a computer?

- Yes, if resources are bounded.
- Regular languages: accepted by computers with very simple access to input and very little memory
- But $\left\{0^{i} 1^{i} \mid i \geq 0\right\}$ is a simple language. And yet no DFA can recognize it.

Except:

- Real computers have finite memory.
- Suppose a computer has q bits of memory.
- The computer can only be in 2^{q} possible states.

Often, we do not care, because that number is so huge.
Typically, we treat computers as having infinite memory, except when it really matters.
Next: Context-free languages (Module 5)
After that: Computers with infinite memory (Module 6)

