
CS 360 - MODULE 7 - ADDITIONAL NOTES

COLLIN ROBERTS

1. Example of Creating a CNF Grammar From An Arbitrary Grammar

Recall the grammar for palindromes over Σ = {0, 1}:
G : S → ε|0|1|0S0|1S1.

Here we create a new CNF grammar G′ such that L(G) = L(G′) ∪ {ε}.
(1) Nullable Variables The only variable, S, is nullable. We add the rules

S → 00|11,
then we delete the rule S → ε. Our modified grammar so far is

G1 : S → 0|1|00|11|0S0|1S1.
(2) Unit Productions There are no unit productions, so there is nothing to do at this step.
(3) Productions With > 2 Symbols on RHS

(a) S → 0S0: Add X1, and add rules
S → 0X1

X1 → S0,

then delete the production S → 0S0.
(b) S → 1S1: Add X2, and add rules

S → 1X2

X2 → S1,

then delete the production S → 1S1.
Our modified grammar so far is

G2 : S → 0|1|00|11|0X1|1X2

X1 → S0

X2 → S1.

(4) Productions With 2 Symbols on RHS Not Both Variables
(a) S → 00: Add X3, X4, and add rules

S → X3X4

X3 → 0

X4 → 0,

then delete the production S → 00.
(b) S → 11: Add X5, X6, and add rules

S → X5X6

X5 → 1

X6 → 1,

then delete the production S → 11.
1

2 COLLIN ROBERTS

(c) S → 0X1: Add X7, and add rules
S → X7X1

X7 → 0,

then delete the production S → 0X1.
(d) S → 1X2: Add X8, and add rules

S → X8X2

X8 → 1,

then delete the production S → 1X2.
(e) X1 → S0: Add X9, and add rules

X1 → SX9

X9 → 0,

then delete the production X1 → S0.
(f) X2 → S1: Add X10, and add rules

X2 → SX10

X10 → 1,

then delete the production X2 → S1.
The final grammar G′ is therefore

S → 0|1|X3X4|X5X6|X7X1|X8X2

X1 → SX9

X2 → SX10

X3 → 0

X4 → 0

X5 → 1

X6 → 1

X7 → 0

X8 → 1

X9 → 0

X10 → 1

In this grammar, we have the derivation
S ⇒ X7X1

⇒ 0X1

⇒ 0SX9

⇒ 0S0

⇒ 0X8X20

⇒ 01X20

⇒ 01SX100

⇒ 01S10

⇒ 01010,

which takes 9 steps, in agreement with our Theorem from class (for a word of length 5).

CS 360 - MODULE 7 - ADDITIONAL NOTES 3

2. The Connection Between Number of Variables and Long Words

Consider the CNF grammar
G : S → 0|XY

X → 0|SY
Y → 1|XS.

A short derivation with no repeated variables is
S ⇒ XY ⇒ 0Y ⇒ 01.

A longer derivation with repeated variables is
S ⇒ XY ⇒ SY Y ⇒ 0Y Y ⇒ 01Y ⇒ 011.

3. The Class of DCFLs Is Closed Under Taking Complements

Theorem 1. Let Let M = (Q,Σ,Γ, δ, q0, Z0, F) be a DPDA. Then there exists a DPDA M ′

such that L(M ′) = (L(M))′, in other words,
The class of DCFLs is closed under taking complements.

Proof. Overview: We need to fix the problems inherent in the intuitive approach of simply
swapping the accept and non-accept states from the given DPDA M . In detail, we must
ensure that words are accepted by M ′ (and thereby included in the complement language)
which cause M to:

• crash, or
• run forever.

We will therefore start by constructing a new DPDA, M1, which mimics the behaviour of M ,
except that M1

• has only two “sink” final states (accepting and non-accepting), and
• does not crash because of having no transitions or encountering an empty stack.

Then from M1, we will construct another DPDA, M2, which mimics the behaviour of M1,
except that M2

• has no infinite ε-loops.
Then we will be able to swap the accept and non-accept states of M2, to obtain the desired
DPDA M ′.
Construction of M1: Let

M1 = (Q ∪ {q−1, r
′, f ′},Σ,Γ ∪ {X0}, δ1, q−1, X0, {f ′}).

Construct δ1 from δ as follows.
• Keep all existing transitions from δ.
• Ensure that f ′ is the unique (sink) accept state and r′ is the unique (sink) reject state

in M1. Accordingly, add transitions
– δ1(r

′, x, ∗) = (r′, ∗), ∀x ∈ Σ,
– δ1(q, ε, ∗) = (r′, ∗), ∀q ∈ Q \ F where this is allowed for a DPDA,
– δ1(f

′, x, ∗) = (f ′, ∗), ∀x ∈ Σ, and
– δ1(f, ε, ∗) = (f ′, ∗), ∀f ∈ F where this is allowed for a DPDA.

• Ensure that M1 never crashes because of no outgoing transition. Add the missing out-
going transitions for all states, input letters and top-of-stack symbols (preserving the
top of stack symbol in every case). Make the new state r′ the target. This keeps
threads which crash in M because of no outgoing transition alive and in a non-accept
state in M1 until the end of input is reached.

4 COLLIN ROBERTS

• Ensure that M1 never crashes because of empty stack. This part of the construction is
analogous to the constructions from class showing that acceptance by final state and
acceptance by empty stack are equivalent. Add transitions to the existing transitions
from M :

– δ1(q−1, ε,X0) = (q0, Z0X0) (prime the stack to detect empty stack crashes in M)
– δ1(q, x,X0) = (r′, X0), ∀x ∈ Σ, q ∈ Q (words which caused an empty stack crash

in M are now explicitly rejected in M1)
– δ1(q, ε,X0) = (r′, X0), ∀q ∈ Q (similar)

This completes the construction of M1.
Construction of M2: A spurious transition in M1 is a transition of the form

(p, ε,X) → (q, γ)

such that
(p, ε,X)

∗
⊢ (p, ε,Xα),

for some stack contents α (possibly empty).
Note that these spurious transitions can be identified in finitely many steps, because all in-
gredients in the definition of the machine M (and therefore of M1) are finite, and therefore
we only need to follow finitely many ε-transitions at each step.
Remove all spurious transitions. If (p, ε,X) → (q, γ) is a spurious transition, then replace it
with

• (p, ε,X) → (r′, X) if p ̸= f ′.
Note that the accept state f ′ has already been handled by the construction above.
Now observe that

• All infinite loops involve a spurious transition. (Think about the stack height as an
infinite loop runs, examine the infinitely many local minima, as the construction is
finite, there must exist a repetition.)

• Deleting spurious transitions as described above does not change the language of the
machine.

This completes the construction of M2.
Finishing the proof: Now having constructed M2 as required, we can construct M ′ by swapping
the accept and non-accept states of M2, completing the proof. □

4. DCFLs Are Not Closed Under Unions / Intersections

Define

Labc = {anbncn | n ≥ 0}

L1 =
{
aibjck | i, j, k ≥ 0

}
= L (a∗b∗c∗)

L2 =
{
aibick | i, k ≥ 0

}
L3 =

{
aibkck | i, k ≥ 0

}
We proved in class that Labc is not context-free. Further observe that

(1) L1 is a regular language, and hence a DCFL,
(2) L2 is a DCFL, and
(3) L3 is a DCFL.

CS 360 - MODULE 7 - ADDITIONAL NOTES 5

Further, we have that
(Labc)

′ = (L1)
′ ∪ (L2)

′ ∪ (L3)
′ .

(Each of L′
1, L

′
2 and L′

3 is one way that a word can fail to be in Labc.)
Since DCFL is closed under complementation, and CFL is closed under union, it follows that
(Labc)

′ is a context-free language. However (Labc)
′ is not a deterministic context free language,

because DCFL is closed under complementation. It follows that DCFL is not closed under
union. But then DCFL is not closed under intersection, since otherwise by De Morgan�s laws,
it would be also closed under union.

5. Does There Exist a Non-Context-Free Language In Which All Long Words
Can Be Pumped?

Yes. Work out the following problem at your leisure.
(1) Let Σ = {a, b, c, d}.

(a) Prove that L = {abjcjdj | j ≥ 0} is not a context-free language.
(b) Prove that F = {aibjckdℓ | i, j, k, ℓ ≥ 0 and if i = 1 then j = k = ℓ} is not a

context-free language.
(c) Exhibit with proof a choice of a positive integer n, such that, for any z ∈ F , we

may write z = uvwxy where
(i) |vwx| ≤ n,
(ii) |vx| ≥ 1 and
(iii) uviwxiy ∈ F , for all i ≥ 0.

	1. Example of Creating a CNF Grammar From An Arbitrary Grammar
	2. The Connection Between Number of Variables and Long Words
	3. The Class of DCFLs Is Closed Under Taking Complements
	4. DCFLs Are Not Closed Under Unions / Intersections
	5. Does There Exist a Non-Context-Free Language In Which All Long Words Can Be Pumped?

