CS 360 - MODULE 7 - ADDITIONAL NOTES

COLLIN ROBERTS

1. Example of Creating a CNF Grammar From An Arbitrary Grammar

Recall the grammar for palindromes over $\Sigma=\{0,1\}$:

$$
G: S \rightarrow \varepsilon|0| 1|0 S 0| 1 S 1 .
$$

Here we create a new CNF grammar G^{\prime} such that $L(G)=L\left(G^{\prime}\right) \cup\{\varepsilon\}$.
(1) Nullable Variables The only variable, S, is nullable. We add the rules

$$
S \rightarrow 00 \mid 11,
$$

then we delete the rule $S \rightarrow \varepsilon$. Our modified grammar so far is

$$
G_{1}: S \rightarrow 0|1| 00|11| 0 S 0 \mid 1 S 1 .
$$

(2) Unit Productions There are no unit productions, so there is nothing to do at this step.
(3) Productions With >2 Symbols on RHS
(a) $\underline{S \rightarrow 0 S 0}$: Add X_{1}, and add rules

$$
\begin{aligned}
S & \rightarrow 0 X_{1} \\
X_{1} & \rightarrow S 0,
\end{aligned}
$$

then delete the production $S \rightarrow 0 S 0$.
(b) $S \rightarrow 1 S 1$: Add X_{2}, and add rules

$$
\begin{aligned}
S & \rightarrow 1 X_{2} \\
X_{2} & \rightarrow S 1,
\end{aligned}
$$

then delete the production $S \rightarrow 1 S 1$.
Our modified grammar so far is

$$
\begin{aligned}
G_{2}: S & \rightarrow 0|1| 00|11| 0 X_{1} \mid 1 X_{2} \\
X_{1} & \rightarrow S 0 \\
X_{2} & \rightarrow S 1 .
\end{aligned}
$$

(4) Productions With 2 Symbols on RHS Not Both Variables
(a) $\underline{S \rightarrow 00}$: Add X_{3}, X_{4}, and add rules

$$
\begin{aligned}
S & \rightarrow X_{3} X_{4} \\
X_{3} & \rightarrow 0 \\
X_{4} & \rightarrow 0,
\end{aligned}
$$

then delete the production $S \rightarrow 00$.
(b) $S \rightarrow$ 11: Add X_{5}, X_{6}, and add rules

$$
\begin{aligned}
S & \rightarrow X_{5} X_{6} \\
X_{5} & \rightarrow 1 \\
X_{6} & \rightarrow 1,
\end{aligned}
$$

then delete the production $S \rightarrow 11$.
(c) $\underline{S \rightarrow 0 X_{1}}$: Add X_{7}, and add rules

$$
\begin{aligned}
S & \rightarrow X_{7} X_{1} \\
X_{7} & \rightarrow 0,
\end{aligned}
$$

then delete the production $S \rightarrow 0 X_{1}$.
(d) $\underline{S \rightarrow 1 X_{2}}$: Add X_{8}, and add rules

$$
\begin{aligned}
S & \rightarrow X_{8} X_{2} \\
X_{8} & \rightarrow 1,
\end{aligned}
$$

then delete the production $S \rightarrow 1 X_{2}$.
(e) $X_{1} \rightarrow S 0$: Add X_{9}, and add rules

$$
\begin{aligned}
& X_{1} \rightarrow S X_{9} \\
& X_{9} \rightarrow 0,
\end{aligned}
$$

then delete the production $X_{1} \rightarrow S 0$.
(f) $X_{2} \rightarrow S$: Add X_{10}, and add rules

$$
\begin{aligned}
X_{2} & \rightarrow S X_{10} \\
X_{10} & \rightarrow 1,
\end{aligned}
$$

then delete the production $X_{2} \rightarrow S 1$.
The final grammar G^{\prime} is therefore

$$
\begin{aligned}
S & \rightarrow 0|1| X_{3} X_{4}\left|X_{5} X_{6}\right| X_{7} X_{1} \mid X_{8} X_{2} \\
X_{1} & \rightarrow S X_{9} \\
X_{2} & \rightarrow S X_{10} \\
X_{3} & \rightarrow 0 \\
X_{4} & \rightarrow 0 \\
X_{5} & \rightarrow 1 \\
X_{6} & \rightarrow 1 \\
X_{7} & \rightarrow 0 \\
X_{8} & \rightarrow 1 \\
X_{9} & \rightarrow 0 \\
X_{10} & \rightarrow 1
\end{aligned}
$$

In this grammar, we have the derivation

$$
\begin{aligned}
S & \Rightarrow X_{7} X_{1} \\
& \Rightarrow 0 X_{1} \\
& \Rightarrow 0 S X_{9} \\
& \Rightarrow 0 S 0 \\
& \Rightarrow 0 X_{8} X_{2} 0 \\
& \Rightarrow 01 X_{2} 0 \\
& \Rightarrow 01 S X_{10} 0 \\
& \Rightarrow 01 S 10 \\
& \Rightarrow 01010,
\end{aligned}
$$

which takes 9 steps, in agreement with our Theorem from class (for a word of length 5).

2. The Connection Between Number of Variables and Long Words

Consider the CNF grammar

$$
\begin{aligned}
G: S & \rightarrow 0 \mid X Y \\
X & \rightarrow 0 \mid S Y \\
Y & \rightarrow 1 \mid X S .
\end{aligned}
$$

A short derivation with no repeated variables is

$$
S \Rightarrow X Y \Rightarrow 0 Y \Rightarrow 01
$$

A longer derivation with repeated variables is

$$
S \Rightarrow X Y \Rightarrow S Y Y \Rightarrow 0 Y Y \Rightarrow 01 Y \Rightarrow 011
$$

3. The Class of DCFLs Is Closed Under Taking Complements

Theorem 1. Let Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ be a DPDA. Then there exists a DPDA M^{\prime} such that $L\left(M^{\prime}\right)=(L(M))^{\prime}$, in other words, The class of DCFLs is closed under taking complements.
Proof. Overview: We need to fix the problems inherent in the intuitive approach of simply swapping the accept and non-accept states from the given DPDA M. In detail, we must ensure that words are accepted by M^{\prime} (and thereby included in the complement language) which cause M to:

- crash, or
- run forever.

We will therefore start by constructing a new DPDA, M_{1}, which mimics the behaviour of M, except that M_{1}

- has only two "sink" final states (accepting and non-accepting), and
- does not crash because of having no transitions or encountering an empty stack.

Then from M_{1}, we will construct another DPDA, M_{2}, which mimics the behaviour of M_{1}, except that M_{2}

- has no infinite ε-loops.

Then we will be able to swap the accept and non-accept states of M_{2}, to obtain the desired DPDA M^{\prime}.
Construction of M_{1} : Let

$$
M_{1}=\left(Q \cup\left\{q_{-1}, r^{\prime}, f^{\prime}\right\}, \Sigma, \Gamma \cup\left\{X_{0}\right\}, \delta_{1}, q_{-1}, X_{0},\left\{f^{\prime}\right\}\right) .
$$

Construct δ_{1} from δ as follows.

- Keep all existing transitions from δ.
- Ensure that f^{\prime} is the unique (sink) accept state and r^{\prime} is the unique (sink) reject state in M_{1}. Accordingly, add transitions
$-\delta_{1}\left(r^{\prime}, x, *\right)=\left(r^{\prime}, *\right), \forall x \in \Sigma$,
$-\delta_{1}(q, \varepsilon, *)=\left(r^{\prime}, *\right), \forall q \in Q \backslash F$ where this is allowed for a DPDA,
$-\delta_{1}\left(f^{\prime}, x, *\right)=\left(f^{\prime}, *\right), \forall x \in \Sigma$, and
$-\delta_{1}(f, \varepsilon, *)=\left(f^{\prime}, *\right), \forall f \in F$ where this is allowed for a DPDA.
- Ensure that M_{1} never crashes because of no outgoing transition. Add the missing outgoing transitions for all states, input letters and top-of-stack symbols (preserving the top of stack symbol in every case). Make the new state r^{\prime} the target. This keeps threads which crash in M because of no outgoing transition alive and in a non-accept state in M_{1} until the end of input is reached.
- Ensure that M_{1} never crashes because of empty stack. This part of the construction is analogous to the constructions from class showing that acceptance by final state and acceptance by empty stack are equivalent. Add transitions to the existing transitions from M :
$-\delta_{1}\left(q_{-1}, \varepsilon, X_{0}\right)=\left(q_{0}, Z_{0} X_{0}\right)$ (prime the stack to detect empty stack crashes in M)
- $\delta_{1}\left(q, x, X_{0}\right)=\left(r^{\prime}, X_{0}\right), \forall x \in \Sigma, q \in Q$ (words which caused an empty stack crash in M are now explicitly rejected in M_{1})
$-\delta_{1}\left(q, \varepsilon, X_{0}\right)=\left(r^{\prime}, X_{0}\right), \forall q \in Q$ (similar)
This completes the construction of M_{1}.
Construction of M_{2} : A spurious transition in M_{1} is a transition of the form

$$
(p, \varepsilon, X) \rightarrow(q, \gamma)
$$

such that

$$
(p, \varepsilon, X) \stackrel{*}{\vdash}(p, \varepsilon, X \alpha),
$$

for some stack contents α (possibly empty).
Note that these spurious transitions can be identified in finitely many steps, because all ingredients in the definition of the machine M (and therefore of M_{1}) are finite, and therefore we only need to follow finitely many ε-transitions at each step.
Remove all spurious transitions. If $(p, \varepsilon, X) \rightarrow(q, \gamma)$ is a spurious transition, then replace it with

- $(p, \varepsilon, X) \rightarrow\left(r^{\prime}, X\right)$ if $p \neq f^{\prime}$.

Note that the accept state f^{\prime} has already been handled by the construction above.
Now observe that

- All infinite loops involve a spurious transition. (Think about the stack height as an infinite loop runs, examine the infinitely many local minima, as the construction is finite, there must exist a repetition.)
- Deleting spurious transitions as described above does not change the language of the machine.
This completes the construction of M_{2}.
Finishing the proof: Now having constructed M_{2} as required, we can construct M^{\prime} by swapping the accept and non-accept states of M_{2}, completing the proof.

4. DCFLs Are Not Closed Under Unions / Intersections

Define

$$
\begin{aligned}
L_{a b c} & =\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} \\
L_{1} & =\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right\} \\
& =L\left(a^{*} b^{*} c^{*}\right) \\
L_{2} & =\left\{a^{i} b^{i} c^{k} \mid i, k \geq 0\right\} \\
L_{3} & =\left\{a^{i} b^{k} c^{k} \mid i, k \geq 0\right\}
\end{aligned}
$$

We proved in class that $L_{a b c}$ is not context-free. Further observe that
(1) L_{1} is a regular language, and hence a DCFL,
(2) L_{2} is a DCFL, and
(3) L_{3} is a DCFL.

Further, we have that

$$
\left(L_{a b c}\right)^{\prime}=\left(L_{1}\right)^{\prime} \cup\left(L_{2}\right)^{\prime} \cup\left(L_{3}\right)^{\prime}
$$

(Each of $L_{1}^{\prime}, L_{2}^{\prime}$ and L_{3}^{\prime} is one way that a word can fail to be in $L_{a b c}$.)
Since DCFL is closed under complementation, and CFL is closed under union, it follows that $\left(L_{a b c}\right)^{\prime}$ is a context-free language. However $\left(L_{a b c}\right)^{\prime}$ is not a deterministic context free language, because DCFL is closed under complementation. It follows that DCFL is not closed under union. But then DCFL is not closed under intersection, since otherwise by De Morgan s laws, it would be also closed under union.

5. Does There Exist a Non-Context-Free Language In Which All Long Words Can Be Pumped?

Yes. Work out the following problem at your leisure.
(1) Let $\Sigma=\{a, b, c, d\}$.
(a) Prove that $L=\left\{a b^{j} c^{j} d^{j} \mid j \geq 0\right\}$ is not a context-free language.
(b) Prove that $F=\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i, j, k, \ell \geq 0\right.$ and if $i=1$ then $\left.j=k=\ell\right\}$ is not a context-free language.
(c) Exhibit with proof a choice of a positive integer n, such that, for any $z \in F$, we may write $z=u v w x y$ where
(i) $|v w x| \leq n$,
(ii) $|v x| \geq 1$ and
(iii) $u v^{i} w x^{i} y \in F$, for all $i \geq 0$.

