
Module 7
Properties of context-free languages
What are the boundaries of being context free?
CS 360: Introduction to the Theory of Computing

Collin Roberts, University of Waterloo
7.1

Topics for this module

• Normal forms for context-free grammars
• The pumping lemma for context-free languages, which is the tool to prove a given

language is not context-free
• Closure properties for context-free languages
• Decision algorithms for context-free languages

Somewhat surprising: context-free languages do not have all of the same closure properties
as regular languages. 7.2

1 Normal forms for context-free grammars
Normal forms

• Normal is not a value statement; it means that the grammar satisfies a very simple
form.

• Theorem: For any context-free grammar G, there is a context-free grammar G′ such
that L(G) = L(G′) (with the possible exception of ε), where all rules of the grammar
G′ are of one of the following two forms:

– A → BC where A, B and C are variables
– A → a, where A is a variable and a is a terminal

• Grammars in this form are in Chomsky Normal Form, or CNF.
7.3

Why do we care?

• Suppose that we want an upper bound for the number of production steps in the
derivation of a given word.

• We cannot do this if derivations can be of arbitrary length.
• changing the grammar to a grammar in CNF improves the situation.
• Also, CNF can make ambiguity in a grammar obvious (though not always).

Idea:
• At each step: either the number of terminals or the string length increases by 1.
• All derivations for a given word will have the same length.

7.4

1

What has to be forbidden?
We need to replace many kinds of now-forbidden rules:
• A → B
• A → ab
• A → Ab
• A → ABC
• A → ε

Some of these simplifications are easier than others; none is especially hard. 7.5

First, removing ε rules
A variable A in a grammar G is nullable if A ∗⇒

G
ε.

If A is nullable, and there is a rule in the grammar B → AC, we add a rule B →C to the
grammar, and the language of the grammar does not change.

• Previous derivation: B ⇒ AC ∗⇒C · · ·
• New derivation B ⇒C · · ·
We can do this for any nullable variable.
• The only word lost is ε, in the case where S is nullable.

7.6

Identifying nullable variables
To identify nullable variables, apply this test:
• If there exists a rule A → ε, then A is nullable.
• If there exists a rule A → B1B2 · · ·Bm, and all Bi are nullable, then A is nullable.
• No other variables are nullable.

Any variable identified by this test is certainly nullable, because the test gives an explicit
derivation A ∗⇒ ε.
We need to show that every nullable variable A is discovered by this test. Suppose that there
is a k-step derivation A k⇒ ε. The argument is by induction on k, the length of the derivation.

• Base case: if k = 1, then there is a rule A → ε, and so the above test discovers that A
is nullable.

• Induction case: The induction hypothesis is that for any strictly shorter derivation
B ∗⇒ ε, the test discovers that B is nullable.

• The first step in the derivation of ε from A is A ⇒ B1 · · ·Bm, where all the derivations
Bi

∗⇒ ε have fewer than k steps. (No terminals can occur in the first step, as the
derivation ends in the empty word.)

• So by the induction hypothesis, the test discovers the Bis are all nullable, and hence
that A is nullable also.

7.7

Dealing with nullable variables
We now must add new rules to the grammar corresponding to the nullable variables.
• Suppose A → aBcD, with B and D nullable.
• Add new rules: A → acD, A → aBc, and A → ac to the grammar, corresponding to the

cases where B generates ε, where D does, and where both do.
In general: from a rule with m nullable variables on the right hand side, add at most 2m −1
new rules, removing each possible subset of the list of nullable variables. (There are 2m ways
of including / excluding the m nullable variables, and we already have the original rule in
which all m of them are included.)
Then, remove null productions A → ε from the grammar. 7.8

2

ε productions are not necessary
Theorem Let G1 be the grammar constructed in this way from the original grammar G.

Then either L(G1) = L(G) or L(G1)∪{ε}= L(G).
• We will not show both directions of the proof (See Theorem 7.9 in the text).
• Here is the proof that if w ∈ L(G) and w ̸= ε, then w ∈ L(G1) (i.e. a proof that L(G)\

{ε} ⊆ L(G′)).
• We will show more generally that if A ∗⇒

G
w, then A ∗⇒

G1
w.

• This is sufficient because we may then take A = S.
• The proof is by induction on k, the number of steps in the derivation A k⇒

G
w.

• Base (k = 1):
– Then A → w is a production in G.
– Since w ̸= ε, therefore A → w is a production in G1 also.
– Therefore we have A ∗⇒

G1
w, as required.

7.9

The inductive case

• Now suppose that we have a k-step derivation A k⇒
G

w, for k > 1.

• The induction hypothesis is that for all derivations A ℓ⇒
G

x with ℓ < k, we have A ∗⇒
G1

x.
• The first step in the derivation of w in G is A ⇒ B1B2 · · ·Bm, where each Bi is a variable

or a terminal.
• At least one variable remains after the first step, as we are not in the base case.
• Write w = w1w2 · · ·wm, where Bi

∗⇒
G

wi for all i. (If Bi is a terminal, say Bi = wi, then

Bi
∗⇒
G

wi trivially.)
• Some of the wi may be ε, but not all, as w ̸= ε. Let C1, . . . ,Cn be the Bi that correspond

to the non-ε subwords of w.
• Since the other Bis are nullable, by construction there exists a derivation in G1 that

starts with A ⇒C1 · · ·Cn.
• Each Ci yields its corresponding wi in G, in fewer than k steps.
• So, by induction, Ci

∗⇒
G1

wi, for all i. Then derive w in G1 via

A ⇒
G1

C1 · · ·Cn
∗⇒

G1
w1C2 · · ·Cn

∗⇒
G1

· · · ∗⇒
G1

w1 · · ·wn = w.

7.10

Next transformation: one-variable transformations

• We want to get rid of productions of the form S → A, with only one variable on the
right hand side.

• Such productions are called unit productions.

Why?
• One reason: avoid cycles like S ⇒ A ⇒ B ⇒ S ⇒ ··· .
Easy:
• Basic idea: find all of the variables we can get to from a given variable.
• If S ∗⇒ A, then add all of A’s productions directly to S’s productions.

7.11

3

Finding unit pairs
Variables (A,B) are a unit pair if A ∗⇒ B.
We can find unit pairs by a simple recursive definition:
• (A,A) is a unit pair for any pair A.
• If (A,B) is a unit pair and there is a rule B →C in our grammar, where C is a variable,

then (A,C) is a unit pair.
• No other pairs are unit pairs.
Easy proof (another induction, which we will not do; it is Theorem 7.11 in the text) that

this method finds all unit pairs. 7.12

Removing unit productions
If S ∗⇒ A in our grammar G, add the productions for A to the productions for S.

Then, remove all unit productions.
Denote the new grammar by G1.
• Any production that previously used the derivation in G starting from S ∗⇒A⇒B1B2 · · ·Bm

can now use the rule S → B1B2 · · ·Bm in the new grammar G1.
• This shows that L(G)⊆ L(G1).
• Now, consider a derivation of a word w in L(G1).

– Suppose we use a rule S → B1B2 · · ·Bm in G1 for a variable S that came from a rule
A → B1B2 · · ·Bm in G, where (S,A) is a unit pair in G.

– Take derivation S ∗⇒
G

A ⇒ B1B2 · · ·Bm.

– Then the rest of derivation follows; any word we can derive in G1, we can also
derive in G.

• This shows that L(G1)⊆ L(G).
• Therefore we have L(G1) = L(G).

7.13

Remaining bad kinds of rules
For A → B1B2 · · ·Bm, where m > 2, create a cascading sequence of rules:
• Only two symbols on right hand side for each rule.
• If we take the first rule for A, then we will produce (eventually) all of B1B2 · · ·Bm.
This is not hard. Create m−2 new variables C1, . . . ,Cm−2, and these rules:

A → B1C1

C1 → B2C2

C2 → B3C3

...
Cm−2 → Bm−1Bm

The new derivation is: A ⇒ B1C1 ⇒ B1B2C2
∗⇒ B1B2 · · ·Bm .

If some of the Bi are terminals, then some of the rules we have just added are still are not
allowed in a CNF grammar.
We will correct this in the next (and last) step. 7.14

The last step
In Chomsky Normal Form, a grammar has two kinds of rules:
• A → BC, for variables A,B and C
• A → a, for variables A and terminals a

If we start with an arbitrary grammar, and we:
• Remove ε-productions

4

• Remove unit productions
• Remove long productions

then the only possible remaining obstacle to being in CNF is that we might still have rules
of the form A → bc or A → Bc, with one terminal on the right hand side of the arrow, but
two symbols. 7.15

The last step, finished
This is easy:
• For a rule of the form A → bc:

– Add two new variables:
∗ Xb, and
∗ Xc.

– Add three new productions:
∗ A → XbXc,
∗ Xb → b, and
∗ Xc → c.

• For a rule of the form A → Bc:
– Add the variable: Xc.
– Add the productions:

∗ A → BXc

∗ Xc → c

The new variables are only used in these derivations, so they do not change the language of
the grammar. The new grammar fits the desired framework. 7.16

Chomsky Normal Form algorithm
From a general CFG:
• Remove ε-productions.

– Find nullable variables.
– Change rules using them
– Then remove all ε-productions.

• Remove one-variable productions.
– Find unit pairs (A,B) for each variable A.
– Add B’s rules to A.
– Then remove one-variable productions

• Remove long productions.
– Create cascading sequence of definitions.

• Remove terminals from two-letter rules.
– Create a new variable for each terminal, and substitute it into the rules

7.17

5

Why do we care?
Theorem: Let G be a CNF grammar. Let w ∈ L(G) be arbitrary. Then any derivation of

w in G takes 2|w|−1 steps.
Proof: by induction on |w|. We will instead prove that for any variable A in G, if A ∗⇒ w,
then the derivation must be of length 2|w|−1 steps. This is sufficient because we may then
take A = S.

• The grammar cannot make ε, so the base case is |w|= 1.
• Base (|w|= 1):

– I claim that the only step in the derivation is A → w.
– There are no nullable variables, so if we instead started with a rule of form A→BC,

we would have to produce at least 2 letters in the end.
– So the only derivation of a 1-letter word takes 1 step.
– Since 1 = 2(1)−1, therefore the base case holds.

7.18

Second half of the induction proof

• Induction (|w|> 1):

– The induction hypothesis is that for all words x satisfying A ∗⇒ x and |x|< |w|, the
derivation of x takes 2|x|−1 steps.

– As we are not in the base case, the first step in the derivation of w must be of the
form A → BC.

– We know that B ∗⇒ w1 and C ∗⇒ w2, where w = w1w2, and neither of w1 or w2 is ε.
– Since w1 and w2 are both shorter than w, by the induction hypothesis, the deriva-

tions for them are of lengths 2|w1|−1 and 2|w2|−1.
– So the overall derivation, first using the A → BC rule, and then the derivations for

w1 and for w2, takes 2|w1|−1+2|w2|−1+1 = 2(|w1|+ |w2|)−1 = 2|w|−1 steps.
7.19

2 The pumping lemma for CFLs, and languages that are not
context free

Pumping lemma: review, and the CFL version
Another use for CNF grammars: creation of a CFL pumping lemma.
How did the pumping lemma work for regular languages?
• A regular language L has a DFA with n states, for some n.
• Once a word x in L is of length at least n, the path through the DFA for x reuses a

state. So x = uvw, where δ̂ (δ̂ (q0,u),v) = δ̂ (q0,u).
• Hence, uw must be in L, as must uvvw and all of uv∗w.
We used this to prove a given language is not regular:
• If for all n, there is a word x in L longer than n letters...
• such that for any decomposition x = uvw with v ̸= ε and |uv| ≤ n...
• uv∗w ̸⊆ L, then L is not regular.

7.20

6

Toward a pumping lemma for CFGs
Suppose we have a CNF grammar G with p variables. Consider a parse tree in that

grammar for a word z ∈ L(G), where |z|= k.
• Each internal node corresponds to a derivation, therefore given k leaves, there are 2k−1

internal nodes (grammar is in CNF).
• The parse tree (excluding leaves) is binary (grammar is in CNF).
• The height of the tree (number of edges in the longest path from the root of the tree

to a leaf) is at least 1+ log2 k.

7.21

In detail,
Theorem 7.17: Suppose we have a parse tree according to a CNF grammar G and suppose
the yield of the tree is a word w. If the height of the tree is ℓ, then |w| ≤ 2ℓ−1.

• The proof is by induction on ℓ.
• Base (ℓ= 1): The length of a path is one less than the number of nodes on the path

(count the edges).
• Thus a tree with height 1 consists of only a root and a leaf.
• Therefore |w|= 1, and 1 ≤ 21−1 = 20 = 1 holds.
• Induction (ℓ > 1):
• The induction hypothesis is that any parse tree of height q < ℓ has yield of length at

most 2q−1.
• The root of the tree must use a production of the form A → BC (as we are not in the

base case).
• The induction hypothesis applies to the subtrees rooted at B and C, so these subtrees

have yields of lengths at most 2ℓ−2.
• The yield of the tree is the concatenation of the yields of these two subtrees, thus its

length is at most 2ℓ−2 +2ℓ−2 = 2ℓ−1.
7.22

In detail (completed),
The Theorem implies that, for a word z ∈ L(G) with length at least 2p, a parse tree for z

has height at least p+1.
• Suppose that 2p ≤ |z|.
• Then by the Theorem we have 2p ≤ |z| ≤ 2ℓ−1, where ℓ is the height of a parse tree for

z.
• Then we must have p ≤ ℓ−1, or in other words p+1 ≤ ℓ.

The Theorem also implies that the height of a parse tree for a word of length k is at least
1+ log2 k.

• By the Theorem we have k ≤ 2ℓ−1, where ℓ is the height of a parse tree.
• Then we must have log2 k ≤ ℓ−1, or in other words log2 k+1 ≤ ℓ.

7.23

7

Repeated variables on the parse tree
Now in a parse tree of height at least p+1, there must be a repeated variable on a path

from root to any terminal on the bottom tree level.

S
A

A

• There are p variables in grammar.
• There are p+1 variables and one terminal on a path starting from the root.
• By the pigeonhole principle, there must be a repeated variable.
What does that mean? 7.24

Repeated variables, in the derivation
One derivation of the word z in G is of the form:

S ∗⇒ uAy
∗⇒ uvAxy
∗⇒ uvwxy = z

S

u y

A

A

w

xv

7.25

Making a pumping lemma
Important: A ∗⇒ vAx and A ∗⇒ w.
So A ∗⇒ vAx ∗⇒ vvAxx ∗⇒ viAxi ∗⇒ viwxi, for any choice of i ≥ 0!
This will give our pumping lemma for CFLs.
Note: it cannot be the case that vx = ε, as a non-trivial repetition of A occurs, and unit

productions A ∗⇒ A are not allowed in a CNF grammar.

8

S

u y

A

A

w

xv

7.26

One more trick
Choose a pair of repeated variables near the bottom of the parse tree.
• By assumption |z| ≥ 2p, so that a parse tree for z has height at least p+1.
• So there exists a terminal in z with a path of length at least p+1 above it.
• By the pigeonhole principle, there is a (non-trivially) repeated variable (Say A) in this

path, no more than p+1 levels above the leaf.
• Then we have A ∗⇒ vAx and A ∗⇒ w, i.e.

– the yield of the subtree rooted at the lowest A is the word w, and
– the yield of the subtree rooted at the second lowest A is the word vwx.

• By construction the subtree rooted at the second lowest A has height at most p+1.
• Applying Theorem 7.17, we have |vwx| ≤ 2(p+1)−1 = 2p.
• As the repetition of A is non-trivial, therefore v and x are not both ε (unit productions

A ∗⇒ A are not allowed in a CNF grammar).
7.27

A full statement of the CFL pumping lemma
Lemma: Let G be a CFG in Chomsky Normal form, with p variables.
• Any word z ∈ L(G) of length at least 2p can be decomposed as z = uvwxy, where
• |vwx| ≤ 2p,
• v and x are not both ε, and
• and for all nonnegative i, uviwxiy ∈ L(G).
As with the pumping lemma for regular languages, we can remove the dependency on a

specific choice of CFG for the CFL, since all CFLs have a CNF grammar. 7.28

Revised version of the pumping lemma
Let L be a context-free language.
• There exists an n > 0 such that any word z ∈ L where |z| ≥ n can be decomposed as

z = uvwxy, where
• |vwx| ≤ n,
• v and x are not both ε, and
• for all nonnegative i, uviwxiy ∈ L.
What does this say about non-context-free languages? 7.29

9

Contrapositive of the pumping lemma
Let L be a language.
• Suppose that for any n > 0, there exists a word z ∈ L with |z| ≥ n such that:

– For any decomposition z = uvwxy, where |vwx| ≤ n and |vx|> 0,
– it is not true that that uviwxiy is in L for all nonnegative integers i.

• Then L is not context free.
This is analogous to the Pumping Lemma for regular languages, except:
• Rather than being decomposed into x = uvw,
• and having all words in uv∗w be in L,
• we now have this 5-partite decomposition.

7.30

One last rephrasing
Let L be a language.
• Suppose that for any n > 0, there exists a word z ∈ L with |z| ≥ n such that:

– For any decomposition z = uvwxy, where |vwx| ≤ n and |vx|> 0,
– There exists an i ≥ 0 such that that uviwxiy is not in L.

• Then L is not context free.
(This just gets rid of one round of double negation.) 7.31

Turning it into English
Let L be a language. Suppose that for any n > 0:
• there exists a word z ∈ L with |z| ≥ n, such that
• for any decomposition z = uvwxy, where |vwx| ≤ n and |wx|> 0,
• there exists an i ≥ 0 such that uviwxiy ̸∈ L.

Suppose that for any definition of long:
• There is a long word
• For which every decomposition
• is not pumpable.

Then L is not context free.
This gives us a recipe for proving that a given language is not context free. 7.32

To prove a language is not context free
Our recipe:
• Find a long word.
• Look at its decompositions.
• Show they cannot be pumped.
Or, formally:
• For given n > 0, find a word z ∈ L at least n letters long.
• Look at all decompositions z = uvwxy, with |vwx| ≤ n,vx ̸= ε.
• Say something useful about the decompositions
• For each decomposition, find an i such that uviwxiy is not in L.
• Then the language L is not context free.

7.33

10

An example: L = {aibici | i ≥ 0}
I claim that the language L = {aibici | i ≥ 0} is not context-free.
• For each n > 0, find a word z ∈ L that is at least n letters long.

We choose the long word z = anbncn. Clearly z ∈ L.
• Consider decompositions z = uvwxy with |vwx| ≤ n and vx ̸= ε.
• Say something useful about all such decompositions.

– All such decompositions have one or two types of letters in vwx, but not all 3.
– (Why? The smallest consecutive substring with all 3 symbols is abnc; it has length

n+2.)
– In particular, vx omits one or two letters of the set {a,b,c}.

• For each decomposition, find an i such that uviwxiy is not in L.
– Consider uwy (i.e. take i = 0). Observe that uwy does not have the same number

of a’s, b’s and c’s, since one of these letters is not in vx, and at least one is!
– Hence, uwy = uv0wx0y is not in L. (Neither is uvvwxxy).

We have shown that z cannot be pumped, and hence, L is not context free. 7.34

Another example
Consider L = {aib jck | i < j, i < k}.
• Let n > 0 be arbitrary.
• Long word: z = anbn+1cn+1.
• Consider decompositions z = uvwxy with |vwx| ≤ n and vx ̸= ε.

In all of them, vx has either no a’s, or has a’s but no c’s.
– Case 1: No a’s.

Then uwy has fewer b’s or fewer c’s than z, but there are not fewer a’s.
So uwy does not have fewer a’s than both b’s and c’s, and therefore uwy is not in
L.

– Case 2: a’s, but no c’s.
uvvwxxy has as at least as many a’s as c’s, so uvvwxxy is not in L.

• So no decomposition of our long word z = anbn+1cn+1 can be pumped.
And, thus, L is not context free. 7.35

One last example
Somewhat surprising, maybe:
L = {ss | s ∈ {a,b}∗}.
L includes words like aa or abbabb or ε or abaaba.
• For a given n > 0, find a long word. We will use z = anbnanbn. (This choice might not

be so obvious.)
• Decompose into z = uvwxy, with |vwx| ≤ n and vx ̸= ε. Then uwy must have at least one

a or one b removed from one of the two copies of the identical string.
• But when we remove vx from uvwxy to form uwy, and lose a letter from the copied

word, we cannot lose the corresponding letter on the other side; it is too far away.
• Therefore uwy /∈ L.
• So L is not context-free.

(See Example 7.21 of the text for all the gory details.) 7.36

A bit surprising
Surprising: The very similar-looking L = {ssR | s ∈ {a,b}∗}, of even-length palindromes, is

context free, with this grammar:
• S → aSa | bSb | ε
However the previous example is still not context-free; we cannot keep all the information

available whenever it is needed. (PDAs, which only recognize CFLs, have trouble with doing
this.) 7.37

11

3 Closure rules for CFLs
Closure rules

• Regular languages are closed under concatenation, Kleene star, union, intersection,
complement, reversal and more.

• For CFLs, the above statement is not true. CFLs are:
– Closed under union, concatenation, Kleene star and reversal.
– Not closed under intersection or complementation.

7.38

The easy ones
Union:
• Grammar G1 : S1 → ···
• Grammar G2 : S2 → ··· (with all different variables)
• New grammar: G : S → S1|S2 · · ·

Concatenation:
• Grammar G1 : S1 → ···
• Grammar G2 : S2 → ··· (with all different variables)
• New grammar: G : S → S1S2 · · ·

Kleene star:
• Grammar G1 : S1 → ···
• New grammar: G : S → ε|S1S 7.39

Reversal
Reversal is not hard, either.
• Given a grammar G, construct a new grammar G′, by reversing the outputs of all of

the productions in G.
• For example, if G has a production S → XY Z, then add the rule S → ZY X to G′.
• (If the grammar is in CNF, this works especially easily.)
• Now for a given derivation of a word w ∈ L(G), apply the corresponding rules in G′ to

generate wR ∈ L(G′).
• Then by construction, L(G′) = L(G)R.
• Then since L(G)R is the language of a context-free grammar, therefore L(G)R is a

context-free language. 7.40

Intersection
We have already seen a language that shows that the intersection of two CFLs is not

always a CFL.
L = {aibici | i ≥ 0} (we saw that this language is not context-free).
• L = L1 ∩L2, where:

– L1 = {aibic j | i, j ≥ 0}.
– L2 = {aib jc j | i, j ≥ 0}.

• L1 and L2 are each the concatenation of two context-free languages, so context free.
• In detail, define

– L11 = {aibi | i ≥ 0} (a CFL, with grammar G : S → aSb|ε), and
– L12 = {c j | j ≥ 0}= L(c∗) (regular, and thus a CFL).
– Then L1 = L11L12.
– And L21 = {ai | i ≥ 0}= L(a∗) (regular, and thus a CFL).
– L22 = {b jc j | j ≥ 0} (a CFL, with grammar G : S → bSc|ε), and
– Then L2 = L21L22.

Therefore, the class of context-free languages is not closed under intersection! 7.41

12

Intersection with a regular language
If L1 is context free and L2 is regular, then L1 ∩L2 is context free.
• Suppose that a PDA M accepts L1 by final state, and that a DFA D accepts L2.
• Let R be the states of M, and FM ⊆ R be the accept states.
• Let S be the states of D, and FD ⊆ S be the accept states.
• Define a PDA, P, which accepts by final state, with

– States Q = R×S,
– Accept states F = FM ×FD,
– and transition function δ , defined from the transition functions δM for M and δD

for D (ignoring stack manipulations for the moment):

δ (a,(r,s)) =
{

{(δM(ε,r),s)} if a = ε
{(δM(a,r),δD(a,s))} if a ̸= ε

– Manipulate the stack in P exactly as it was manipulated in M.
• Then P is a PDA, and from construction, we have that

– P accepts w

– if and only if M accepts w and D accepts w

– if and only if w ∈ L1 ∩L2, so that L1 ∩L2 is a CFL.
Note, this construction will not work for intersection of two arbitrary CFLs: both PDAs
would need editing access to the one stack. 7.42

Complementation
The following example will show that the class of context-free languages is not closed

under taking complements. Let L1 = {aib jck | i ̸= j or k ̸= j}.
• Then L1 is context-free, as it is the union of the four CFLs:

– L11 = {aib jck | i < j}= {aib j | i < j}{ck | k ≥ 0},
– L12 = {aib jck | i > j}= {aib j | i > j}{ck | k ≥ 0},
– L13 = {aib jck | j < k}= {ai | i ≥ 0}{b jck | j < k}, and
– L14 = {aib jck | j > k}= {ai | i ≥ 0}{b jck | j > k}.

• For example, a grammar for {aib j | i < j} is G : S → b|Sb|aSb.
Now, consider L2 = L(a∗b∗c∗)′. That is, L2 is the set of words that are not of the form aib jck,
for any choice of i, j,k.

• Then L2 is regular, as it is the complement of a regular language. (Exercise: What is
a regular expression for L2?)

• Then L2 is a CFL.
Then L = L1 ∪L2 is context-free, as it is the union of two context-free languages. 7.43

Complementation, continued
Note that words in L are:
• of the form aib jck for some i, j,k, but not having i = j = k, or
• not of the form aib jck, for any choice of i, j,k.

Now, consider L′. I claim that
L′ = {aibici | i ≥ 0}.

We have

L′ = (L1 ∪L2)
′

=︸︷︷︸
DeMorgan

L′
1 ∩L′

2.

13

• L′
2 = (L(a∗b∗c∗)′)′ = L(a∗b∗c∗) is the set of words that can be written in the form aib jck,

for some choice of i, j,k,
• and L′

1 is the set of such words for which i = j = k,
• and therefore our description of L′ is correct.
• We have already seen that L′ is not context free.

L is context free, and its complement is not context-free.
Therefore the class of context-free languages is not closed under complementation. 7.44

Contrasts with DCFLs
DCFLs are closed under complementation.
• Proving this is non-trivial.
• See the additional notes for Module 7.
Simple proof that there are context-free languages that are not DCFLs: we just saw one.

L is context-free, while L′ is not context-free (and hence not a DCFL) 7.45

4 Decision algorithms for CFLs
Decision algorithms for CFLs

• Your textbook constructs a couple of efficient algorithms for transforming CFGs to
CNF, or to test membership of a word in the language of the CFL.

• One, in particular, is used in bioinformatics, a lot; see section 7.4.4 for the CYK
algorithm, which tests membership of a word of length n in the language of a CNF
grammar in O(n3) runtime.

Lots of the analogues to the problems we saw in Module 4 for regular languages are not
solvable by computers. 7.46

What we can do: membership

• Given a CFG, does its language include the word w?
– Turn it into CNF.
– Try all derivations of length 2|w|−1.
– Does any of them derive w?

• Given a PDA, does its language include the word w?
– Turn it into a CFG.
– Use the algorithm for CFGs. (Note: This is an example of a reduction. Reductions

will be crucial when working with Turing machines at the end of the course.)
– We cannot just run the PDA: it might run forever!

7.47

Empty language
Given a CFG, is its language empty?
• First turn it into CNF.
• Lemma: If a CFG in CNF, G, having p variables generates any words, then it must

generate a word with fewer than 2p letters.
Proof:

– Assume L(G) ̸= /0.
– Let z0 ∈ L(G) be arbitrary.
– If |z0|< 2p, then we are finished.
– Otherwise, |z0| ≥ 2p and by the proof of the Pumping Lemma, we can decompose

z0 = u0v0w0x0y0, with |v0w0x0| ≤ 2p and v0x0 ̸= ε.

14

– If |u0w0y0|< 2p, then we are finished.
– Otherwise, |u0w0y0| ≥ 2p and u0w0y0 ∈ L(G) and so by the proof of the Pumping

Lemma, we can decompose u0w0 = u1v1w1x1y1, with |v1w1x1| ≤ 2p and v1x1 ̸= ε.
– Continuing in this way we obtain a sequence of words in L(G) having strictly

decreasing lengths: z0,u0w0y0,u1w1y1, . . . ,u jw jy j,
– As z0 has finite length, after at most |z0|−2p +1 steps, we will obtain a word in

L(G) with length < 2p. □
• Enumerate all of them, and test membership for each.
• This is unbelievably slow, but it will work.

7.48

Undecidable problems
Other sensible problems are undecidable:
• Given two CFGs, do their languages have any words in common?
• Given two CFGs, do their languages have all words in common?
• Is the language of a CFG equal to Σ∗?
• Given two CFGs, is the language of one a subset of the other’s?
• Is a given CFG ambiguous? (Note: this is about the grammar, not the language.)
• Is a given CFL inherently ambiguous?

That is, there is no algorithm for any of these problems!
• Note: We are not saying that we are waiting for an algorithm to be discovered.
• We know that no algorithm can exist to solve each of these problems.

7.49

End of module 7

• Normal forms for CFGs let us prove theorems about them, and design efficient algo-
rithms to test membership.

• Some surprisingly simple languages are not context-free.
• The class of context-free languages is not closed under as many operations as the class

of regular languages.
• Many natural CFL problems are undecidable.

End of second main unit. In the Turing machine unit, we design real algorithms, and
identify the limits of real computers. 7.50

15

	Normal forms for context-free grammars
	The pumping lemma for CFLs, and languages that are not context free
	Closure rules for CFLs
	Decision algorithms for CFLs

