
CS 360 - MODULE 9 - ADDITIONAL NOTES

COLLIN ROBERTS

1. Reductions Are Highly Directional

Here we exhibit a choice of decision problems P1, P2 (which are questions of membership in
the languages L1, L2 respectively over Σ = {0, 1}) such that there exists a reduction from P1

to P2, but there does not exist a reduction from P2 to P1.
Let

L1 = L(0∗)

L2 = {M | L(M) is non-regular} = Lnreg.

Note that:

• L1 is regular. Therefore L1 is a DCFL, a CFL, and a decidable language.
• L2 = Lnreg is undecidable. This is proved explicitly in Module 9, and is also easily
proved directly using Rice’s Theorem.

• Since some TMs have regular languages, while other TMs have non-regular languages,
we have that L2 ̸= ∅ and L2 ̸= Σ∗.

• Then by Problem 2a on CM A06, there exists a reduction from P1 to P2.
• Now for a contradiction, assume that there exists a reduction from P2 to P1.
• Then, since P2 is not decidable, Theorem 9.7 implies that P1 is undecidable. This
contradiction shows that no reduction from P2 to P1 exists.

2. If a Language and it Complement are Both CFLs, Does It Follow That the
Language a DCFL?

Here we present a counterexample to show that this statement does not hold in general. Let

Σ = {0, 1}
L = {w ∈ Σ∗ | wR = w},

i.e. L is the language of palindromes over Σ.
We have that L is a CFL, generated by the grammar G : S → ε|0|1|0S0|1S1.
It is an exercise to prove that the complement L′ is also a CFL. I suggest constructing a
PDA to recognize even-length non-palindromes (an old assignment question for CS 360), and
another PDA to recognize odd-length non-palindromes. This shows that both languages are
CFLs, and then by the closure rules for CFLs, their union is also a CFL.
We argued informally in class that L is not the language of any DPDA, in other words, L is
not a DCFL.

3. The Halting Problem Is Recursively Enumerable, But Not Recursive

Recall this definition of the Halting Problem:
LHalt = {(e, w) | TM represented by e, halts when processing w}
Construct the Halting Turing Machine, Mhalt, to simulate a Turing machine M , on an input
w.

(1) Input: a pair, (e, w).
(2) If e does not represent any TM, then Mhalt rejects (e, w).

1

2 COLLIN ROBERTS

(3) Otherwise, if e = f(M) for some Turing machine M , then
(a) If M accepts w, then Mhalt accepts (e, w).
(b) If M rejects w, then Mhalt accepts (e, w).
(c) If M runs forever on w, then Mhalt runs forever on (e, w).

(1) The halting language, LHalt, is recursively enumerable.
(a) Mhalt will have four tapes:

(i) Keep (e, w), which really is (M,w)
(ii) Mimic M ’s tape
(iii) Maintain the current state, q, of M
(iv) Use for scratch work

(b) To simulate one transition (δ(q, a)) from M , inside of Mhalt:
(i) Use tape #1, to look up M ’s transition δ(q, a).

(A) Important: e on tape #1 is the full specification of M .
(ii) Update M ’s state on tape #3.
(iii) Update M ’s tape contents on tape #2; move the tape head L or R.
(iv) Repeat as needed.

(c) Mhalt is a Turing machine; its language, Lhalt, is r.e.
(2) Lhalt is not recursive.

(a) We present a reduction from Lu to Lhalt.
(b) Let (e, w) be any candidate for Lu.
(c) Construct new TM, M ′

halt, to carry out the following algorithm:
(i) On any input x ∈ {0, 1}∗ (say),

(A) Ignore x and run U on (e, w).
(B) If U accepts (e, w), then make M ′

halt halt and accept x
(C) If U rejects (e, w), then make M ′

halt execute an infinite loop
(D) U can run forever on (e, w), in which case M ′

halt runs forever on x.
(ii) By construction, M ′

halt halts for all inputs x, if and only if U accepts (e, w).
(iii) Take (M ′

halt, 0) as the corresponding instance for Lhalt.
This reduction, plus Theorem 9.7, prove that Lhalt is not recursive.

	1. Reductions Are Highly Directional
	2. If a Language and it Complement are Both CFLs, Does It Follow That the Language a DCFL?
	3. The Halting Problem Is Recursively Enumerable, But Not Recursive

