CS 360 - MODULE 9 - ADDITIONAL NOTES

COLLIN ROBERTS

1. REDUCTIONS ARE HIGHLY DIRECTIONAL

Here we exhibit a choice of decision problems P_1, P_2 (which are questions of membership in the languages L_1, L_2 respectively over $\Sigma = \{0, 1\}$) such that there exists a reduction from P_1 to P_2 , but there does **not** exist a reduction from P_2 to P_1 . Let

$$L_1 = L(0^*)$$

$$L_2 = \{M \mid L(M) \text{ is non-regular}\} = L_{nreg}.$$

Note that:

- L_1 is regular. Therefore L_1 is a DCFL, a CFL, and a decidable language.
- $L_2 = L_{nreg}$ is undecidable. This is proved explicitly in Module 9, and is also easily proved directly using Rice's Theorem.
- Since some TMs have regular languages, while other TMs have non-regular languages, we have that $L_2 \neq \emptyset$ and $L_2 \neq \Sigma^*$.
- Then by Problem 2a on CM A06, there exists a reduction from P_1 to P_2 .
- Now for a contradiction, assume that there exists a reduction from P_2 to P_1 .
- Then, since P_2 is not decidable, Theorem 9.7 implies that P_1 is undecidable. This contradiction shows that no reduction from P_2 to P_1 exists.

2. IF A LANGUAGE AND IT COMPLEMENT ARE BOTH CFLS, DOES IT FOLLOW THAT THE LANGUAGE A DCFL?

Here we present a counterexample to show that this statement does **not** hold in general. Let

$$\begin{split} \Sigma &= \{0,1\}\\ L &= \{w \in \Sigma^* \mid w^R = w\}, \end{split}$$

i.e. L is the language of **palindromes** over Σ .

We have that L is a CFL, generated by the grammar $G: S \to \varepsilon |0| 1 |0S0| 1S1$.

It is an exercise to prove that the complement L' is also a CFL. I suggest constructing a PDA to recognize even-length non-palindromes (an old assignment question for CS 360), and another PDA to recognize odd-length non-palindromes. This shows that both languages are CFLs, and then by the closure rules for CFLs, their union is also a CFL.

We argued informally in class that L is **not** the language of any DPDA, in other words, L is not a DCFL.

3. The Halting Problem Is Recursively Enumerable, But Not Recursive

Recall this definition of the Halting Problem:

 $L_{Halt} = \{(e, w) \mid \text{TM represented by } e, \text{ halts when processing } w\}$

Construct the Halting Turing Machine, M_{halt} , to simulate a Turing machine M, on an input w.

- (1) Input: a pair, (e, w).
- (2) If e does not represent any TM, then M_{halt} rejects (e, w).

COLLIN ROBERTS

- (3) Otherwise, if e = f(M) for some Turing machine M, then
 - (a) If M accepts w, then M_{halt} accepts (e, w).
 - (b) If M rejects w, then M_{halt} accepts (e, w).
 - (c) If M runs forever on w, then M_{halt} runs forever on (e, w).
- (1) The halting language, L_{Halt} , is recursively enumerable.
 - (a) M_{halt} will have four tapes:
 - (i) Keep (e, w), which really is (M, w)
 - (ii) Mimic M's tape
 - (iii) Maintain the current state, q, of M
 - (iv) Use for scratch work
 - (b) To simulate one transition $(\delta(q, a))$ from M, inside of M_{halt} :
 - (i) Use tape #1, to look up M's transition $\delta(q, a)$.
 - (A) Important: e on tape #1 is the full specification of M.
 - (ii) Update M's state on tape #3.
 - (iii) Update M's tape contents on tape #2; move the tape head L or R.
 - (iv) Repeat as needed.
 - (c) M_{halt} is a Turing machine; its language, L_{halt} , is r.e.
- (2) L_{halt} is not recursive.
 - (a) We present a reduction from L_u to L_{halt} .
 - (b) Let (e, w) be any candidate for L_u .
 - (c) Construct new TM, M'_{halt} , to carry out the following algorithm:
 - (i) On any input $x \in \{0, 1\}^*$ (say),
 - (A) Ignore x and run U on (e, w).
 - (B) If U accepts (e, w), then make M'_{halt} halt and accept x
 - (C) If U rejects (e, w), then make M'_{halt} execute an infinite loop
 - (D) U can run forever on (e, w), in which case M'_{halt} runs forever on x.
 - (ii) By construction, M'_{halt} halts for all inputs x, if and only if U accepts (e, w).
 - (iii) Take $(M'_{halt}, 0)$ as the corresponding instance for L_{halt} .

This reduction, plus Theorem 9.7, prove that L_{halt} is not recursive.