
Module 9
Undecidability
What computers cannot do.

CS 360: Introduction to the Theory of Computing
Spring 2024

Collin Roberts
University of Waterloo

1

Topics for this module

▶ An undecidable language
▶ Other undecidable languages
▶ Reduction: how to prove a given language is undecidable
▶ Undecidable problems in automata theory
▶ End of the course

In my view this is by far most important and interesting material in CS
360.

2

A language that is not decidable

Remember from before:
▶ L is decidable or recursive if there exists a Turing machine M with

L = L(M) where M halts on all inputs.
▶ L is recursively enumerable if there exists a Turing machine M with

L = L(M).
Are all languages recursive?
No.

3

Diagonalization argument
The argument is similar to showing there are more real numbers than
integers.
This is counterintuitive: is one type of infinity bigger than another?
Yes.
▶ We say that sets S and T are of equal cardinality if there exists a

bijection f between S and T.
▶ (Recall that a function f : S → T is a bijection if it is both injective

and surjective.)
▶ If S and T are both finite, then the definition of equal cardinality

agrees with our intuition: the sets are of equal cardinality if they
have the same number of elements.

▶ For infinite sets, this can feel counter-intuitive: for example, if
▶ S = {even integers}, and
▶ T = {all integers}, and
▶ f(x) = x

2 ,
then f : S → T is a bijection.

▶ S and T are of equal cardinality, even though our intuition might tell
us that S is “half” the size of T.

Are there bigger and smaller infinities?
4

Countable sets

▶ A set S is countably infinite: of equal cardinality to Z (or any infinite
subset of Z).

▶ A set S is countable: of equal cardinality to a subset of Z.
▶ A countable set S can be described by listing: S = {s1, s2, s3, . . . , sn}

for finite S, or S = {s1, s2, s3, . . .} for infinite S.
▶ A set S is uncountable if it is not countable.
▶ If S is uncountable, then any listing S = {s1, s2, s3, . . .} misses some

members of S.
We know that countable sets exist, e.g. Z, or { even integers }. The
positive integers are also countable.
But do uncountable sets exist?

5

The real numbers between 0 and 1 are uncountable.

Consider S = [0, 1] ⊂ R. Is S countable?
▶ For a contradiction, assume

that S is countable.
▶ Suppose that f : Z+ → S is a

bijection.
▶ Then S = {s1, s2, . . .} =

{f(1), f(2), . . . , }.
▶ List the binary expansions of

S, in the order s1, s2,
▶ Consider the number a that

we get by concatenating the
opposite of the ith bit at
each position si in the list.

s1 = .011011010111 · · ·
s2 = .010001111111 · · ·
s3 = .111000011101 · · ·
s4 = .110111100101 · · ·

...

In this example, a = .1000 · · · . Note: a ∈ S, by the definition of S.

6

The real number a is not one of the si!
We have constructed a so that it is not one of the si.
▶ It differs from s1 in the first bit.
▶ It differs from s2 in the second bit.
▶ It differs from si in the ith bit!

We see a ̸= si for all choices of i. But a ∈ S. So we did not enumerate all
of the members of S! We have a contradiction, and therefore S is not
countable.
▶ Note: if we add a to the list, we can again find a missing number.
▶ To show this takes some boring housekeeping, e.g.

0.01111111 · · · = 0.1000000 · · · .
▶ Actually, R is much larger than Z. Take a measure theory course to

learn all the gory details.
▶ Do you find this proof disturbing? If so, then you are not alone!

Georg Cantor, who first gave this proof, and created modern set
theory, suffered depression and poor psychological health as a result.

This is called a diagonalization argument.

7

Building to a proof about Turing machines

We will adapt this argument to show that there are undecidable
languages.
We need to identify each Turing machine M (over the binary alphabet
{0, 1}) with a binary string.
▶ Suppose we have states q1, . . . , qr, for some r.
▶ Let q1 be the start state and let q2 be the unique accept state. (One

accept state is enough as we halt when we enter any accept state.)
▶ Suppose that the tape symbols are X1, . . . ,Xs, for some s. Assume

that
▶ X1 = 0,
▶ X2 = 1,
▶ X3 = B,
▶ and the other symbols may be assigned as required.

▶ Refer to direction L as D1, and R as D2.
▶ Now we can encode the transition function.

8

Building to a proof about Turing machines
▶ Suppose that one transition rule is δ(qi,Xj) = (qk,Xℓ,Dm), for some

integers i, j, k, ℓ and m.
▶ Encode this rule as 0i10j10k10ℓ10m.
▶ As all of i, j, k, ℓ and m are at least 1, there are no consecutive 1s in

this string.
▶ A code for the entire TM M consists of all the n codes for the

transitions, in some order, separated by pairs of 1s:
11C111C211 · · · 11Cn11,

where each Ci is the code for transition number i in M.
▶ We have encoded a binary string to identify the Turing machine M;

treat it as an integer index for each machine M. f(M) is the integer
that we produce in this way.

▶ There can be multiple codes for M (but only finitely many). We
could renumber the states, for example. We will see soon why this
point does not affect the diagonalization argument that we are going
to make.

▶ The set of Turing machines is countable. We just built a bijection to
a subset of Z.

9

So what about Turing machines?
▶ There are only countably many Turing machines, hence there are

only countably many recursively enumerable languages.
▶ But there are uncountably many unary languages.
▶ Here is a bijection from the set of languages over the alphabet {a} to

the set S = [0, 1] defined before, which we proved is not countable:
▶ Given a language L ⊆ {a}∗, define

f(L) =
∑

i≥0:ai∈L
2−(i+1).

▶ f is injective.
▶ If ai ∈ L1 and ai /∈ L2, then the (i + 1)th bit is 1 in f(L1) but is 0 in

f(L2).
▶ We can also see how to construct the language L so that f(L) equals

any desired expansion, so that f is surjective.
▶ If the ith bit is 1 in the expansion, then include ai−1 in L.
▶ If the ith bit is 0 in the expansion, then exclude ai−1 from L.

▶ There must be non-recursively enumerable languages, as there are
not enough Turing machines!

This proof is completely unsatisfying! What are these non-recursively
enumerable languages? Can we adapt Cantor’s proof somehow?

10

A language about Turing machines

Every Turing machine M has an identifier w = f(M).
▶ Consider the language

LSA = {w | the Turing machine M represented by w accepts w}.

▶ LSA is the language of identifiers for machines that accept when
given their own identifiers as inputs.

▶ LSA: The subscript SA indicates self-accepting.
▶ It might seem that we should not be allowed to make this definition,

but why is this? Lots of programs process other programs!
Remember: w = f(M) is basically the code of the program for M.
▶ Parsers, compilers, interpreters, profilers, etc.
▶ For example, a syntax parser whose input is the parser should accept:

“Yes, that program uses proper syntax.”
It will turn out that LSA is not decidable, but LSA will not be our first
example of an undecidable language.

11

An undecidable language
Instead, consider

LNSA = {w | the Turing machine M represented by w does not accept w}.

▶ LNSA is the language of identifiers for Turing machines that do not
accept when given their own identifiers as inputs.

▶ For example, a program that finds syntax errors: it will not accept
itself, since it does not have any syntax errors! If M is a properly
coded syntax error detector represented by w, then w ∈ LNSA.

Is LNSA the language of any Turing machine?
▶ Suppose that LNSA = L(M), for some Turing machine M.
▶ Does M accept its own identifier w? Is w ∈ LNSA?

▶ Suppose M accepts its own identifier w.
▶ Then w is not in LNSA, which is the language of M.
▶ So M does not accept w.

▶ Suppose M does not accept its own identifier w.
▶ Then w is in LNSA, which is the language of M.
▶ So M accepts w.

12

LNSA is not the language of any Turing machine
This tells us that LNSA is not the language of any Turing machine.
▶ We formalize this via a retread of Cantor’s diagonalization argument.
▶ For any Turing machine M, LNSA differs from L(M) in at least one

position.
▶ If the Turing machine M represented by w accepts w (so that

w ∈ L(M)), then w /∈ LNSA.
▶ If the Turing machine M represented by w does not accept w (so

that w /∈ L(M)), then w ∈ LNSA.
▶ LNSA differs from the languages of all Turing machines.
▶ By definition, LNSA is not recursively enumerable.
▶ Then LNSA is also not decidable.

(Your text denotes LNSA as Ld, where the subscript d reminds us of
diagonalization.)
▶ Now we see why the uniqueness of the identifier for a given Turing

machine is not crucial for this result.
▶ No identifier can represent a Turing machine M such that

L(M) = LNSA.

13

Other undecidable languages

▶ Some undecidable languages are recursively enumerable.
▶ Consider LSA, the language of encodings for machines that do

accept their encoding.
▶ LSA is recursively enumerable, but undecidable.
▶ We need a new Turing machine, the Universal Turing Machine: an

interpreter.

14

Why have an interpreter?

Why an interpreter?
▶ Turing machines are a good representation of programs: we build

compilers and interpreters in normal computer languages.
▶ Turing machines can comfortably manipulate other Turing machines’

descriptions.
Also historically significant:
▶ The idea of an interpreter is striking, since people were not actually

programming computers yet when Turing had the idea.
▶ When there were real computers, 10 years later, Turing invented the

first real programming language.
▶ (Also a good machine coder, but talked about using programming

languages in debugging.)

15

What will the Universal Turing Machine do?
The Universal Turing Machine U simulates a Turing machine M.
▶ Input: a pair of strings, (e,w). (If you like, the machine’s tape

alphabet can have parentheses and commas.)
▶ If e is not the encoding of any Turing machine, then U rejects (e,w).

▶ Many identifiers correspond to no Turing machine at all, e.g. 00110
does not start with 1, and

▶ 11001011101001010011 is not valid because it has three consecutive
1s.

▶ If e = f(M) for some Turing machine M, and M accepts w, then U
accepts (e,w).

▶ If e = f(M) and M rejects w, then U rejects (e,w).
▶ If e = f(M) and M runs forever on w, then U runs forever on (e,w).

Define Lu = L(U): the universal language; it includes all pairs (e,w),
where
▶ e = f(M) for some Turing machine M, and
▶ w ∈ L(M).

16

Does U exist?

U will have four tapes:
▶ One tape keeps (e,w), which really is (M,w)
▶ One tape maintains the tape for M
▶ One tape maintains the current state q of M

▶ (state qi is indicated by 0i)
▶ One tape is used for scratch work

To make a transition in M, we:
▶ Rewind U’s first tape, and find the right transition in M for (q, a),

where the second tape head points to a.
▶ Important: we can find the correct values for δ(q, a) on the first

tape (that binary string encodes all the logic from M after all).
▶ Copy the new state for the machine onto the third tape.
▶ Update the second tape and move the tape head.

17

Some last details

▶ If we reach an accept state in M, then U accepts immediately.
▶ If M crashes, then U must crash as well.
▶ We will need a Turing machine to parse a possible identifier for a

Turing machine to determine whether it is proper.
▶ As we know how the identifiers are constructed, we can write an

algorithm for this.
▶ By the Church-Turing Thesis, we can create a Turing machine to

execute the algorithm.

18

What good is this?

We may simulate one step of M’s execution by many steps of U.
▶ We only care that this simulation can be done, not how slowly it will

run.
An interesting idea: we can run U on U’s encoding. U is a Turing
machine, after all.

19

Is Lu decidable?

The universal language, Lu is recursively enumerable.
▶ Trivial: U is a Turing machine; its language is r.e.

Lu is not decidable.
▶ For a contradiction, suppose that Lu is decidable. Suppose there is a

Turing machine U′ which decides Lu.
▶ Recall that LNSA: machine descriptions w of machines M that do not

accept w as input, is not r.e., and thus not decidable.
▶ We will use U′ to construct a new Turing machine MNSA that

decides membership of w in LNSA:
▶ Run U′ on input (w,w).
▶ If U′ accepts (w,w), then reject.
▶ If U′ rejects (w,w), then

▶ If w is the encoding of a Turing machine (which we can test), then
accept.

▶ Else reject.
▶ By our assumption, there is no possibility that U′ runs forever.

20

What does that get us?

We still need to argue that MNSA decides membership in LNSA.
▶ Suppose that w represents some Turing machine M.
▶ If M accepts w, then U′ accepts (w,w). So MNSA rejects w, as it

should.
▶ If M does not accept w, then U′ rejects (w,w). So MNSA accepts w,

as it should.
Therefore MNSA decides membership in LNSA. But LNSA is not decidable!
This is not possible! Therefore U′ cannot exist. This contradiction proves
that U is not decidable.
We have proved that the universal language, Lu, is recursively
enumerable, but not decidable.

21

Reduction

This argument shows a key idea which is used two places in computer
science:

1. Producing an algorithm: to solve problem B, if you have a solution
for A and a way to transform B into A, then you are done.

2. Proving no algorithm exists: to show B cannot be solved, if you have
shown A cannot be solved, and that A can be transformed into B,
then B cannot be solved.
Why? If B had a solution, then we could solve A by transforming A
to B, and solving B.

Use #1 of reduction is common in algorithm design. In computability
and complexity, we use #2.

22

This reasoning pops up elsewhere

Fact: perpetual motion machines do not exist.
▶ If someone says “My bike wheel will never stop spinning”
▶ You say “If so, then your bike wheel is a perpetual motion machine.

But perpetual motion machines do not exist. Therefore, you are
lying. Your bike wheel will eventually stop.”

▶ Notice how this works:
▶ Someone says “A exists”
▶ If A existed, then B would also have to exist.
▶ But B does not exist.
▶ Hence, A does not exist, either.

23

Another recursively enumerable language

LSA, which contains descriptions for Turing machines that accept their
own descriptions is recursively enumerable, but not decidable.
▶ LSA is r.e.

▶ Construct a Turing machine M, which, on input w,
▶ runs U on (w,w),
▶ accepts if U accepts (w,w), and
▶ rejects if U rejects (w,w).
▶ Note, U can run forever on input (w,w), causing M to run forever on

input w.
▶ Then by the definition of U, it is clear that L(M) = LSA.

▶ LSA is not decidable.
▶ If it were, then we could decide membership in LNSA easily:
▶ Check membership in LSA and do the opposite.
▶ but since LNSA is not decidable, this is impossible.

This give us some closure rules.

24

Closure rules for decidable and recursively
enumerable languages

Theorem: If L is decidable, then so is its complement L′.
▶ Proof: Suppose that a Turing machine M decides membership in L.
▶ Create a new Turing machine M′ to decide membership in L′:

▶ For any candidate word w,
▶ Run the machine M on input w,
▶ If M accepts w, then M′ rejects it;
▶ if M rejects w, then M′ accepts it.
▶ By our hypothesis, there is no possibility that M runs forever.

▶ From this construction it is clear that M′ decides membership in L′.
Remark: This result is false if we replace ‘decidable’ with ‘recursively
enumerable’, as we shall see on the next slide.

25

Closure rules for decidable and recursively
enumerable languages
Theorem: If both L and L′ are recursively enumerable, then L is recursive.

▶ Proof: Suppose that M accepts L and M′ accepts L′.
▶ Create a 3-tape Turing machine, ML, to simulate running M and M′

in parallel, in which:
▶ tape #1 controls whether the machine is currently simulating a step

of M or a step of M′ (after executing a step in one machine, it
alternates to the other),

▶ tape #2 simulates the tape of M, and
▶ tape #3 simulates the tape of M′.

▶ For any word w, either M or M′ (and not both) must accept w in a
finite number of steps.
▶ If M accepts w, then ML accepts w.
▶ If M′ accepts w, then ML rejects w.

▶ Then L is decided by ML.
Remark: If the complement of every recursively enumerable language
was recursively enumerable, then this Theorem would imply that every
recursively enumerable language is decidable, and we already have
examples that show that this is not true.

26

A couple of other rules

Theorem: The intersection of two r.e. languages is r.e..
▶ Proof: Suppose that M1 accepts L1 and M2 accepts L2.
▶ We will construct a Turing machine M which accepts L1 ∩ L2.
▶ For any candidate word w,
▶ Run M1 with input w.
▶ If w ∈ L1, then M1 will accept w in finite time.
▶ If M1 accepts w, then run M2 with input w.
▶ If M2 also accepts w, then M accepts w.
▶ If either M1 or M2 rejects w, then M rejects w.
▶ If either M1 or M2 runs forever on input w, then M runs forever on

input w.
▶ It is clear from construction that M accepts L1 ∩ L2.

27

A couple of other rules

Theorem: The union of two r.e. languages is r.e.:
▶ Proof: Suppose L(M1) = L1 and L(M2) = L2.
▶ Suppose that e1 identifies M1 and e2 identifies M2.
▶ We will construct a Turing machine M which accepts L1 ∪ L2.
▶ M is non-deterministic.
▶ For any candidate word w,
▶ M runs two copies of the universal machine U nondeterministically in

parallel.
▶ If U accepts either (e1,w) or (e2,w), then M accepts w.

▶ It is clear from construction that M accepts L1 ∪ L2.

28

Proper definition of reduction

▶ Suppose we have two decision problems P1 and P2.
▶ Both problems are actually questions of testing membership in a

language.
▶ In detail, for two languages L1 and L2 and two words w and x,

▶ P1 is of the form “is w ∈ L1?”, and
▶ P2 is of the form “is x ∈ L2?”.

▶ Suppose also that we have an algorithm A that transforms instances
of P1 into instances of P2 such that:
▶ “Yes” instances of P1 get mapped to “yes” instances of P2.
▶ “No” instances of P1 get mapped to “no” instances of P2.
▶ The algorithm A always takes finite time.

▶ Then we say that A reduces P1 to P2.
We will use reduction to show that problems are undecidable or not
recursively enumerable.

29

Using a reduction to prove a language is undecidable

Theorem 9.7: If there is a reduction from P1 to P2, then
1. If P1 is undecidable, then P2 is also undecidable.
2. If P1 is non-recursively enumerable, then P2 is also non-recursively

enumerable.
Proof: First part
▶ For a contradiction, suppose that P2 is decidable.
▶ Construct a Turing machine to decide P1: for any instance w of P1,
▶ Apply the reduction algorithm to turn w into an instance x of P2.
▶ Run the machine that decides “is x in P2?”
▶ If the answer is “yes”, then the answer for “is w in P1?” is “yes”.
▶ If the answer is “no”, then the answer for “is w in P1?” is “no”.
▶ So whatever answer we obtained for “is x in P2?” is also the correct

answer to “is w in P1?”.
▶ But then P1 is decidable, and this is a contradiction.

30

Using a reduction to prove a language is not
recursively enumerable

Second part
▶ For a contradiction, suppose that P2 is recursively enumerable.
▶ Construct a Turing machine to accept P1: for any instance w of P1,
▶ Apply the reduction algorithm to turn w into an instance x of P2.
▶ Run the machine that tests “is x in P2?”
▶ If the answer is “yes”, then the answer for “is w in P1?” is “yes”.
▶ If the answer is “no”, then the answer for “is w in P1?” is “no”.
▶ The machine may also run forever.
▶ So whatever answer we obtained for “is x in P2?” is also the correct

answer to “is w in P1?”.
▶ But then P1 is recursively enumerable, and this is a contradiction.

31

Other undecidable problems about Turing machines

Rice’s Theorem:
▶ Given: any “interesting” property P, held by some, but not all

recursively enumerable languages.
▶ Let LP be the language of Turing machine codes w = f(M) for

machines whose language satisfy property P.
▶ Then LP is not decidable.

We must define “interesting” precisely. A few examples before we do
that:
▶ Empty language: Given a Turing machine M, does it accept ∅?
▶ Finite language: Given a Turing machine M, is L(M) finite?
▶ Regular language: Given a Turing machine M, is its language

regular?

32

Proof for non-empty language

Nonempty language: Given w identifying the Turing machine M, is the
language of M non-empty?
More formally: Let

Lne = {w | w identifies the Turing machine M and L(M) ̸= ∅}.

Lne is recursively enumerable. Here is an algorithm for a Turing machine
Mne that accepts Lne:
▶ Given the identifier w for the Turing machine M, guess a word x

(nondeterministically) that M might accept.
▶ (As our alphabet is finite, we can systematically test all possible

words starting with the shortest ones first.)
▶ Nondeterministically execute M on all possible choices of x.
▶ If M accepts any choice x, then Mne accepts w.

33

Is Lne decidable?

Lne is not decidable. We give two proofs here, the first with “bare
hands”, the second using Theorem 9.7. The content is essentially the
same in both proofs. Not surprisingly, the proof using Theorem 9.7 is a
bit shorter.
For both proofs, let Σ be a non-empty finite alphabet (e.g. Σ = {0, 1}).
“Bare Hands” Proof:
▶ For a contradiction, suppose that we have a machine, Mne, which

decides membership in Lne.
▶ From this, we will create a new machine, Mu, which decides

membership in Lu.
▶ Suppose we have a pair (e,w) whose membership in Lu we want to

test.
▶ Assume that e is the identifier for some Turing machine M.
▶ We lose no generality here, as we know how to decide whether this

is true.

34

Is Lne decidable?
▶ Create a new Turing machine M′:

▶ M′, when called with any input x, runs M with input w.
▶ If M accepts w, then M′ accepts x.
▶ If M rejects w, then M′ rejects x.
▶ M might also run forever on input w.
▶ Thus we have that

L(M′) =

{
Σ∗ if M accepts w
∅ otherwise

▶ Note: M′ ignores its input x. M′ always runs M on input w.
▶ Let w′ represent M′.

▶ Now construct Mu to run Mne with input w′.
▶ If Mne accepts w′, then by construction M accepts w, and therefore

(e,w) ∈ Lu.
▶ If Mne rejects w′, then by construction M does not accept w, and

therefore (e,w) /∈ Lu.
▶ By our assumption, Mne halts on every input.

▶ This shows that Mu decides membership in Lu.
▶ As Lu is undecidable, we have our contradiction.

35

Is Lne decidable?
Proof Using Theorem 9.7:
▶ Define P1: Is (e,w) in Lu?, and P2: Is w′ in Lne?
▶ The following algorithm reduces P1 to P2:

▶ Let (e,w) be an arbitrary instance for P1.
▶ Construct a new Turing machine, M′, such that, for any input

x ∈ Σ∗, M′ will run U on (e,w).
▶ If U accepts (e,w), then M′ accepts x.
▶ If U rejects (e,w), then M′ rejects x.
▶ U may also run forever on (e,w).
▶ Then we have

L(M′) =

{
Σ∗ if U accepts (e,w)
∅ otherwise

▶ Let w′ represent M′.
▶ Now take w′ as the corresponding instance for P2.

▶ Then “yes” instances of P1 are sent to “yes” instances of P2, and
“no” instances of P1 are sent to “no” instances of P2.

▶ We have reduced membership testing in Lu, the universal language,
to membership testing in Lne.

▶ As Lu is undecidable, therefore by Theorem 9.7, so is Lne.
36

A few other terminology notes

Church-Turing thesis:
▶ Any reasonable model of digital computation can be expressed in

terms of Turing machines.
Remarks:
▶ We may think of an algorithm as a Turing machine that computes a

function or decides a language.
▶ There are always a finite number of steps in its computation.
▶ Recall that undecidable languages, or problems corresponding to

membership in undecidable languages, do not have algorithms.

37

What we did for Lne

We reduced Lu to Lne.
▶ “Yes” instances of Lu were mapped to “yes” instances of Lne, and

“no” instances to “no” instances.
▶ If Lne has an algorithm (is a decidable language), then so does (is)

Lu.
▶ We know Lu is not decidable.
▶ Therefore Lne is not decidable.

38

What about testing for empty language?
Simpler notation: Lne = {M | L(M) ̸= ∅}.
▶ (From now on, we stop talking about f, the encoding, as much.) Let

Le = {M | L(M) = ∅}.
Is Le r.e.? Is Le decidable?
▶ Neither.
▶ The complement of Lne is

L′
ne = Le ∪ {w | w is not the encoding of any Turing machine }.

▶ As {w | w is not the encoding of any Turing machine } is
decidable, therefore it is also recursively enumerable.

▶ Then if Le is r.e., then so is L′
ne (as it is the union of two r.e.

languages).
▶ But if a language and its complement are both r.e., then the

language is decidable.
▶ And we know that Lne is not decidable.
▶ So Le cannot be r.e..
▶ Therefore Le also cannot be decidable.

39

Turing Machines with an Infinite Language
Infinite language: Let

L∞ = {M | L(M) is infinite }.

▶ Then L∞ is undecidable:
▶ Our earlier reduction of Lu to Lne also reduces Lu to L∞.
▶ From a candidate instance (M,w) for the universal language, we

produce a new machine M′ whose language is infinite exactly when
M accepts w.

▶ Then “yes” instances of Lu are mapped by our algorithm to “yes”
instances of L∞ and “no” instances of Lu are mapped by our
algorithm to “no” instances of L∞.

▶ As we cannot decide Lu, therefore By Theorem 9.7 we cannot decide
L∞ either.

▶ The same reduction also shows that LA = {M | L(M) = Σ∗} is
undecidable.

40

Turing Machines with a Finite Language

I claim that Lfin = {M | L(M) is finite } is also undecidable.
Proof:
▶ For a contradiction, suppose that Lfin is decidable
▶ Then its complement, (Lfin)′, is also decidable.
▶ Writing

(Lfin)
′ = L∞∪{w | w is not the encoding of any Turing machine }︸ ︷︷ ︸

decidable

,

we will have the desired contradiction by applying the following
Lemma (as we already know that L∞ is undecidable).

41

Turing Machines with a Finite Language

Lemma: If sets A and B satisfy A ∩ B = ∅, and if A ∪ B and B are both
decidable, then A is decidable.
Proof:
▶ Let x be a candidate for membership in A.
▶ Test x for membership in A ∪ B.

▶ If x /∈ A ∪ B, then reject x,
▶ otherwise, test x for membership in B.

▶ If x ∈ B, then reject x,
▶ otherwise, accept x.

▶ As A ∩ B = ∅, this algorithm will accept x if and only if x ∈ A, as
required. □

We then get the desired result on the previous slide by taking

A = L∞, and
B = {w | w is not the encoding of any Turing machine }.

42

Turing Machines with a Non-Regular Language
Turing machines with non-regular languages:
▶ Let Lnreg = {M | L(M) is not regular}.
▶ We will reduce membership in Lu to membership in Lnreg, then apply

Theorem 9.7.
▶ Given a candidate instance (M,w) for Lu, we construct a new

machine M′ that accepts a non-regular language if M accepts w, and
a regular language if M does not accept w.

▶ For any input x, our new machine M′ simulates M on w.
▶ If M accepts w, then M′ accepts x if and only if x = 0i1i, for some

i ≥ 0 (and rejects x otherwise).
▶ (We know that the set of all such words is not a regular language.)
▶ If M does not accept w, then M′ rejects x.
▶ (The empty language is regular by definition.)

▶ Then
L(M′) =

{
{0i1i | i ≥ 0} if M accepts w
∅ otherwise

▶ We have reduced membership in Lu to membership in Lnreg.
▶ But Lu is undecidable.
▶ So by Theorem 9.7, Lnreg is undecidable, too.

43

Turing Machines with a Regular Language
I claim that Lreg = {M | L(M) is regular } is also undecidable.
Proof:
▶ For a contradiction, suppose that Lreg is decidable
▶ Then its complement, (Lreg)′, is also decidable.
▶ Writing

(Lreg)
′ = Lnreg∪{w | w is not the encoding of any Turing machine }︸ ︷︷ ︸

decidable

,

we will have the desired contradiction by applying the previous
Lemma (as we already know that Lnreg is undecidable) with:

A = Lnreg, and
B = {w | w is not the encoding of any Turing machine }.

These results show that any “interesting” property of Turing machine
languages is not decidable. We make this notion precise in the following
Theorem.

44

Rice’s Theorem
Theorem: Let P be a property of some, but not all, recursively
enumerable languages. (I.e. P is some non-empty proper subclass of the
class of r.e. languages.) Then the language LP = {M|L(M) ∈ P} is
undecidable.
Remark: Here we only work with the identifiers for legal Turing
machines.
Proof: Case 1: Suppose that the empty language, ∅, is not in P.
▶ Let L be a non-empty recursively enumerable language that is in P.
▶ Let ML be a Turing machine that accepts L.
▶ We will reduce membership in Lu to membership in LP, then apply

Theorem 9.7.
▶ Let (M,w) be a candidate instance for Lu.
▶ Create a new machine, M′ that, on any input x, simulates U on

(M,w).
▶ If U accepts (M,w), then we simulate ML on x.

▶ If ML accepts x, then M′ accepts x.
▶ If U rejects (M,w) or if ML rejects x, then M′ rejects x.
▶ If U runs forever on (M,w), or if U accepts (M,w) and ML then runs

forever on x, then M′ runs forever on x.
45

Rice’s Theorem

▶ The above construction gives us that the language of M′ is

L(M′) =

{
L if U accepts (M,w)
∅ otherwise

▶ Let w′ identify M′.
▶ Take w′ as our candidate for membership in LP.
▶ Then “yes” instances for Lu are sent to “yes” instances for LP (as we

chose L ∈ P and L ̸= ∅), and
▶ “no” instances of Lu are sent to “no” instances for LP (as ∅ /∈ P).
▶ We have reduced membership in Lu to membership in LP.
▶ But since Lu is undecidable, then by Theorem 9.7, LP is also

undecidable.

46

And if P holds for ∅?

Case 2: Suppose that the empty language, ∅, is in P.
▶ Consider the property P′, which is the negation of property P.
▶ Then since ∅ /∈ P′, therefore testing membership in LP′ is

undecidable, by the proof of Case 1.
▶ Since every Turing machine accepts a recursively enumerable

language, therefore (LP)′ = LP′ .
▶ For a contradiction, suppose that LP is decidable.
▶ Then (LP)′ = LP′ is also decidable.
▶ But this contradicts the fact that testing membership in LP′ is

undecidable.
▶ Therefore LP must be undecidable.

47

What can we decide?

Is any interesting problem about Turing machines decidable?
Not really.
Exceptions:
▶ “Does this Turing machine have fewer than k states?”
▶ “Does this Turing machine ever move the tape head left on any

input?”
▶ Mostly irrelevant.

48

Problems about two machines
There are obvious problems about two languages, too: given M1 and M2,
▶ is L(M1) = L(M2)?
▶ is L(M1) ⊆ L(M2)?
▶ is L(M1) ∩ L(M2) = ∅, i.e. are the languages disjoint?

These are all undecidable, too.
▶ Suppose we could decide any of these problems.
▶ Then suppose we wanted to decide, for an arbitrary machine M,

whether M ∈ Le. (Recall: that problem is undecidable.)
▶ Make new machines M2 that rejects all inputs, and M3 that accepts

all inputs.
▶ If L(M) = L(M2), then M ∈ Le (else M /∈ Le).
▶ If L(M) ⊆ L(M2), then M ∈ Le (else M /∈ Le).
▶ If L(M) ∩ L(M3) = ∅, then M ∈ Le (else M /∈ Le).

In all three cases, given a machine that decides the desired equality or
containment, we could then decide membership in Le, which is
undecidable.
Therefore these problems are undecidable, too.

49

Decision problems about CFGs and CFLs

We did not answer these questions, before:
▶ Given two CFGs G1 and G2, is L(G1) ∩ L(G2) = ∅?
▶ Given a CFG G, is it ambiguous?

To answer them (which is to say, to show that they are undecidable), we
need to define a new problem.
Post’s Correspondence Problem is a funny undecidable game (sort of).
This dates to roughly WWII.

50

Post’s Correspondence Problem

▶ We are given a finite set of “tiles”, where each tile contains two
strings over a finite alphabet Σ.

(a1, b1), (a2, b2), . . . , (an, bn).

▶ We want a non-empty string x, where it is possible to join together a
sequence of tiles from the set (allowing repetition), and where the
concatenation of the ai strings and the concatenation of the bi
strings are both equal to x.

▶ Huh?

51

Example of PCP
Tiles:
T1 : (00, 001),T2 : (11, 10) and T3 : (011, 1).
Want: string x to obtain from both parts of the tiles.
▶ (Note: we do not know what x is!)
▶ Guess x. Suppose x = 001100011.
▶ Tile sequence: (T1,T2,T1,T3).
▶ Look at the first strings: 00 + 11 + 00 + 011 = 001100011
▶ And the second strings: 001 + 10 + 001 + 1 = 001100011
▶ These are the same.
▶ We have exhibited a solution to this instance of PCP.
▶ There are instances of PCP for which no solution exists. See

Example 9.14 on p402 of the text.
▶ So the question naturally arises: “Is there an algorithm to decide

whether any given instance of PCP has a solution or not?”
▶ In other words, “Is PCP decidable?”

52

PCP is undecidable

Theorem: PCP is not decidable. (In other words, given any instance of
PCP, no algorithm exists to determine whether that instance can be
solved.)
This Theorem is proved by reducing membership in the universal
language to deciding PCP:
▶ Given an instance (M, x) of the universal language Lu.
▶ Compute a set of tiles, such that if M accepts x, it also is a “yes”

instance of the PCP, and vice versa.
▶ See the text for details; it is pretty.

53

So what?

We can apply this fact to prove that two CFG problems are undecidable:
▶ CFG-intersection:

▶ Given: Two grammars G1 and G2.
▶ Question: Is L(G1) ∩ L(G2) ̸= ∅?

▶ CFG-ambiguous:
▶ Given: Grammar G.
▶ Question: Is G ambiguous?

54

Proof for CFG-intersection

Given any PCP instance (a1, b1), (a2, b2), . . . , (an, bn), let
A = {a1, . . . , an} and B = {b1, . . . , bn}.
Let L(A) be all strings we can obtain by concatenating some words from
A together, ending with a string of tags ci to indicate the reversed order
of the tiles used.
▶ Example: suppose we append a1, a3, a7. Then a1a3a7c7c3c1 needs to

be in L(A).
▶ The reversed string of ci indicates which tiles were included.

L(A) is context free:
▶ GA : A → ε | a1Ac1 | a2Ac2 | · · · | anAcn.

And similarly we define B, L(B) and GB.
Do L(A) and L(B) have any non-empty words in common?

55

Deciding CFG-intersection decides PCP

If L(A) and L(B) have non-empty words in common, then we can solve
the instance of PCP:
▶ The word in L(A) matches the word in L(B).
▶ We used the same set of tiles (because they both end with the same

string of ci).
▶ We created the same word before the ci.

If L(A) and L(B) have no non-empty words in common, then we cannot
solve the instance of PCP.
So if we could decide CFG-intersection, then we could decide PCP, which
is undecidable.
▶ Therefore CFG-intersection is undecidable.

56

Deciding CFG-ambiguity decides PCP

Consider the grammars GA for L(A) and GB for L(B). Construct a new
grammar GAB with
▶ variables A, B and S (with S as the start variable),
▶ productions S → A|B,
▶ all the productions from GA and
▶ all the productions from GB.

With this construction completed, we now have the desired result by the
following Theorem.
Theorem: GAB is ambiguous if and only if the instance (A,B) of PCP
has a solution.
Remark: This Theorem implies that if we can decide CFG-ambiguity,
then we can decide PCP. Since we already know that we cannot decide
PCP, therefore we conclude that we cannot decide CFG-ambiguity either.

57

Deciding CFG-ambiguity decides PCP

Proof: (“If”)
▶ Suppose that the indices i1, i2, . . . , im are a solution to this instance

of PCP.
▶ Then we have these derivations in GAB:

S ⇒ A ⇒ ai1Aci1 ⇒ ai1ai2Aci2ci1 ⇒ · · · ⇒ ai1 · · · aimcim · · · ci1

S ⇒ B ⇒ bi1Bci1 ⇒ bi1bi2Bci2ci1 ⇒ · · · ⇒ bi1 · · · bimcim · · · ci1

▶ By assumption, we have that ai1 · · · aim = bi1 · · · bim , i.e both
derivations yield the same terminal string.

▶ Since the derivations are distinct by construction, therefore we
conclude that GAB is ambiguous.

58

Deciding CFG-ambiguity decides PCP

(“Only if”)
▶ Assume that GAB is ambiguous.
▶ The grammars GA and GB are unambiguous, because of the trailing

tile markers.
▶ So the only way that a terminal string can have two different

derivations in GAB is if one derivation starts with S → A and the
other starts with S → B.

▶ The string with two different derivations has a tail cim · · · ci1 , for
some m ≥ 1.

▶ This tail gives a solution to the instance of PCP, because what
precedes the tail is ai1 · · · aim in the first derivation and bi1 · · · bim in
the second, and by assumption these must be equal.

59

Main ideas of Module 9

▶ There exist undecidable languages.
▶ Most interesting languages about the languages of Turing machines

are undecidable.
▶ Post’s Correspondence problem: several decision problems about

context-free grammars are also undecidable.

60

End of the course

This is the end of CS 360.
The biggest ideas in this course are:
▶ Simple machine models can be used to accept increasingly

sophisticated languages.
▶ Problems can be formally stated, and modelled as languages.
▶ Computation can be formally modelled by a Turing machine.
▶ There are problems that cannot be solved by computers.
▶ Reduction: Solve one problem by changing it into another problem

that you already know how to solve.

61

Simple models are useful

DFAs and NFAs
▶ Model computers with a finite amount of memory
▶ Can verify whether a word comes from a regular language
▶ Remarkably useful for text searching (though rarely are full-fledged

DFA/NFAs used)
▶ A surprisingly complicated set of languages is actually regular

Main idea: many different extensions to NFA/DFA do not change the
power of the underlying model.

62

Simple models

CFGs:
▶ Very useful in parsing computer language syntax
▶ Not good at parsing human languages (where context is crucial)
▶ Can be used for compression

PDAs:
▶ Like an NFA, but infinite stack memory
▶ The most trivial way to augment a finite memory
▶ Accept exactly CFLs.

63

Turing machines

Like a DFA, but:
▶ Infinite memory
▶ Move back and forth in the memory
▶ Real computation tasks

▶ Arithmetic
▶ Verifying a number is a perfect square
▶ Finding a duplicated string

▶ Our full idea of what a computer really is
Many equivalent models (non-determinism, etc.); much like real
computers, except with infinite memory

64

Church-Turing thesis

Basic philosophical basis for the claim that Turing machines are
reasonable models of computation.
“Any algorithmic procedure that can be carried out at all can be carried
out by a TM.”
▶ First stated in the 1930s.
▶ We basically believe it; most anything anyone can propose turns out

to be equivalent to a TM.

65

Turing machine languages

▶ Recursive language: Can be decided by a TM
▶ Recursively enumerable language: Can be enumerated by a TM, or

can be accepted by a TM.
▶ Pretty much any reasonable problem can be characterized as a

language, but not all problems are actually solvable by a TM.
▶ Unsolvable problem: related language is not decidable.

66

Undecidable languages

We saw examples of languages that are undecidable:
▶ Does this TM accept this word?
▶ Does this TM accept a regular language?
▶ Is the intersection of the languages of these two CFGs empty?
▶ Is this CFG ambiguous?

67

Reduction, to show a problem cannot be solved

To show P is unsolvable:
▶ Suppose problem Q is unsolvable.
▶ Show a way of changing instances of Q into instances of P.
▶ If a solution method for P existed, we could use that solve Q.
▶ But Q is unsolvable. Therefore, no solution method for P exists,

either.

68

That’s all, folks

Good luck on your exams!

69

	An undecidable language
	Other undecidable languages
	Reductions
	Undecidable problems in automata theory
	Wrap-up

