Remember that if L_1 reduces to L_2, then we can decide membership in L_1 using an algorithm (TM) for membership in L_2.

In particular, if L_2 is Turing-decidable, and $L_1 \leq L_2$, then L_1 is Turing-decidable.

We did this by using a computable function f such that

$$x \in L_1 \iff f(x) \in L_2.$$

Now we want to replace “Turing-decidable” with “decidable in polynomial time”.

Then we have to replace “computable function f” with a suitable related notion.
Polynomial-time reductions

What we want is that if L_1 reduces to L_2 via a polynomial-time reduction, then a polynomial-time algorithm for L_2 gives a polynomial-time algorithm for L_1.

The obvious analogy is to demand that f itself be polynomial-time computable.

We say L_1 reduces in polynomial time to L_2, and write $L_1 \leq_P L_2$, if there is a polynomial-time computable function f such that

$$x \in L_1 \iff f(x) \in L_2.$$
Theorem. If $L_2 \in P$ and $L_1 \leq_P L_2$, then $L_1 \in P$.

Proof. By picture. Let M_2 be a polynomial-time TM for L_2, and construct a polynomial-time TM M_1 for L_1 from it, using the reduction f:

(We see that $L_1 \in P$ using exactly the same reasoning as when we showed that the composition of two polynomial-time computable functions is computable in polynomial time.)
A similar result for NP

Theorem. If $L_2 \in \text{NP}$ and $L_1 \leq_P L_2$, then $L_1 \in \text{NP}$.

Proof. Exactly the same proof as for P, except now M_1 and M_2 are nondeterministic Turing machines.

Exercise. Find another proof of this result using the alternate definition of NP.
Theorem. If $A \leq_P B$ and $B \leq_P C$, then $A \leq_P C$.

Proof. Follows immediately from the result we proved for composition of polynomial-time computable functions in a previous lecture:

If f is the polynomial-time computable function giving the reduction from A to B, and g is the polynomial-time computable function giving the reduction from B to C, then the composition $g \circ f$ is the polynomial-time computable function giving the reduction from A to C.
The “hardest” Turing-recognizable language

If we go back to ordinary reductions for a second, then there is a way in which we can consider the language of the universal Turing machine U

$$A_{DTM} = \{ e(T)e(w) : T \text{ accepts } w \}$$

as the “hardest” Turing-recognizable language. Namely:

Theorem. Every Turing-recognizable language L reduces to A_{DTM}.

Proof. Let M be a DTM recognizing L. We need to construct f such that

$$x \in L \iff f(x) \in A_{DTM}.$$

How can we do this?

Easy: define $f(x) = e(M)e(x)$.

This is actually very cool, because there is no notion of “hardest regular language”.
We can now define a notion of “hardest” language in NP:

(a) We say that a language B is **NP-hard** if $A \leq_P B$ for all languages $A \in \text{NP}$.

(b) We say that a language B is **NP-complete** if it is NP-hard and $B \in \text{NP}$.

Thus (a) is a *lower bound* on the complexity of B; it says it is as least as hard as every single language in NP.

And (b) is a *upper bound* on the complexity of B; it says it is in NP.
Now, before we get too excited, remember that these are just *definitions*.

Just because we make a definition doesn’t mean there necessarily exist languages that *satisfy* the definition.

However, it turns out that not only are there NP-complete and NP-hard languages, there are *hundreds* of them known.
Common pitfalls

Don’t make the common mistake of thinking that if a language is in NP, then it must be “hard”.

(NP stands for “nondeterministic polynomial time”, and does not stand for “not polynomial” as some people mistakenly think.)

Remember that $P \subseteq NP$, so there are lots of languages in NP that are “easy”.

It’s the NP-complete languages (NPC) and NP-hard languages (NPH) that are probably hard.

Many NP-complete languages are known (like SUBSUM and HAM), but so far nobody knows a polynomial-time algorithm for any of them.
Although we do not currently know for sure that $P \cap \text{NPC} = \emptyset$, most people believe this is the case.

And we can also prove the following:

Theorem. If any single NP-complete language is in P, then every language in NP is also in P.

Proof. Let A be NP-complete and let B be any language in NP. Then by definition of NP-completeness, we know $B \leq_P A$. Suppose $A \in P$. Then by a theorem we proved, we know $B \in P$.

So to prove $P = \text{NP}$, all we have to do is find a *single* NP-complete language that is in P.

No one has been able to do this so far.