Nine Errors Students Commonly Make When Applying the Pumping Lemma

The pumping lemma for regular languages is the following:

Lemma.

For all regular languages L, there exists a constant n (depending on L) such that for all $z \in L$ with $|z| \geq n$, there exists a factorization $z = uvw$, with $|uv| \leq n$, $|v| \geq 1$, such that for all $i \geq 0$ we have $uv^iw \in L$.

Note that the pumping lemma states a property of regular languages. Hence one cannot use it directly to prove that a language is regular, but one can use the contrapositive (or proof by contradiction) to prove that a language is not regular. The contrapositive is as follows:

If for all n, there exists a $z \in L$ with $|z| \geq n$ such that for all factorizations $z = uvw$ satisfying the conditions $|uv| \leq n$ and $|v| \geq 1$, there exists an $i \geq 0$ such that $uv^iw \notin L$, then L is non-regular.

One common way people think about the pumping lemma is as follows: you are playing a four-step game against an adversary. The adversary is all-powerful, knows everything, but cannot cheat. Your goal is prove the language non-regular; your adversary is trying to prevent your proof from going through. You take turns choosing various objects:

- **Step 1:** adversary chooses n.
- **Step 2:** you choose $z \in L$ with $|z| \geq n$.
- **Step 3:** adversary chooses a factorization $z = uvw$ with $|uv| \leq n$ and $|v| \geq 1$.
- **Step 4:** you choose i. You “win” and show L is not regular if $uv^iw \notin L$, no matter what the adversary did in steps 1 and 3. Otherwise you lose: your proof didn’t work.

The following are the nine errors students commonly make in applying the pumping lemma:

Error 1. Choosing a string z that is not in L. For example, suppose

$$L = \{ww : w \in \{a, b\}^*\}.$$

You might incorrectly choose $z = a^n b^n$, which is not in L. At this point it’s easy to “win” — just pick $i = 1$; then $z = uv^i w \notin L$.

1
Error 2. Not handling all possible factorizations of the string z as uvw. For example, consider

$$L = \{ww : w \in \{a, b\}^*\}$$

again. Suppose the adversary chooses n and you choose $z = a^{2n}$. Then the adversary is supposed to choose a factorization $z = uvw$. If, by mistake, you do not think about all possible factorizations of z, you might wrongly choose to look only at the factorization specified by $u = \epsilon, v = a, w = a^{2n-1}$. In this case, you could choose $i = 0$, to get the string $uv^i w = a^{2n-1} \notin L$ and “win”. But you haven’t really “won”, because you didn’t handle all possible ways the adversary could factor z. The adversary could have chosen $u = \epsilon, v = aa, w = a^{2n-2}$, in which case $uv^i w \in L$ for all $i \geq 0$. In fact, if you choose $z = a^{2n}$, then you cannot possibly “win” the game. You need to choose a different z here.

Error 3. Choosing a string z that is not specific enough. Remember: you get to choose any string in L, based on n, that is longer than n in length. Why make the adversary’s job easy? The adversary wants to defeat you by picking a bad factorization. Usually, the more specific you choose your string, the less freedom the adversary will have to respond. For example, in the language L above, you might have been tempted to choose $z = xx$, where x was any string of length $\geq n$. Then you let the adversary break the string up as $z = uvw = xx$. By picking $i = 0$, you might conclude that $uvw \notin L$ and “contradict” the pumping lemma. But this is simply not true! It does not suffice to show that $uv^{i}w \notin L$ for a particular x; you must show it for all possible x, since that is the meaning of not being in L.

In fact, this kind of argument cannot succeed with such a general choice of z. For if your string was, say, $z = a^n a^n$, then the adversary can choose $u = \epsilon, v = aa$, and $w = a^{2n-2}$. In this case, no matter what i you choose, the resulting string $uv^i w \in L$, and you cannot “win”.

Moral of the story: construct your string z with care.

Error 4. Choosing a string z that does not depend on n. For example, in the language L above, suppose you picked $z = abab$. The problem is that you don’t know what n is; you must be able to account for all possible values of n picked by the adversary. If the length of the string you picked is not a function of n, you are in trouble.

Error 5. Choosing a negative or fractional i. This is not allowed by the statement of the pumping lemma. In looking at $uv^i w$, you must choose an i that is a non-negative integer. Furthermore, since $z \in L$, considering the case $i = 1$ will never win.

Error 6. Applying the pumping lemma to a regular language. For example, consider

$$L = \{0^x1^y : x + y \equiv 0 \pmod{4}\}.$$

This language is regular, but you might be tempted to try to prove it is not regular via the pumping lemma. You might pick, for example, the string $z = 0^{4n+3}1$. Then let the adversary factor z as $z = uvw$. Hence $u = 0^a, v = 0^b$, and $w = 0^c$, where $a + b + c = 4n + 3$. Then
you might assert, “We can choose i such that $uw^i w = 0^{4n+3+ib} 1$, and then clearly for all b we
have that $x + y = 4n + 3 + ib + 1$ is not a multiple of 4.”

The problem with this claim is that it is false. For example, if $b = 4$, then $4n + 3 + ib + 1$
is a multiple of 4 for all i.

Moral here: be careful about what you assert, and be fairly confident that the language
is indeed non-regular before you begin your proof.

**Error 7. Assuming that all long strings in a regular language L can be written
as $uv^i w$ for some $i \geq 2$.** This is not necessarily true. For example, if $L = \{0, 1, 2\}^*$, then
you might be tempted to conclude that there exist words u, v, w such that all sufficiently
long strings in L can be written in the form $uv^i w$ for some $i \geq 2$. This is simply false, as
there exist strings in L that contain no substring of the form xx — this was first proved by
the Norwegian mathematician Axel Thue in 1906.

Similarly, the pumping lemma proves that if a language is regular and infinite, it must
contain a subset of the form $uv^i w$ for some nonempty string v. But this is not true of all
infinite languages. For example, the set of all strings over $0, 1, 2$ having no substring of the
form xx is infinite.

Error 8. Trying to use the pumping lemma to prove that a language is regular.
The pumping lemma is a statement about a property of regular languages. It says, “If L is
regular, then L has the following property.” Hence one cannot use the pumping lemma to
prove that a language is regular; one can only use it to prove a language is non-regular.

In fact, there are languages which are non-regular, but nevertheless satisfy the conclusions
of the pumping lemma! One example is the following language:

$$L = \{a^i b^j c^k : i = 0 \text{ or } j = k\}.$$

Suppose $z \in L$ is the string chosen to pump. There are two cases.

Case 1: $z = b^j c^k$ for some integers j, k. Pick $n = 1$; hence we may assume either
$j \geq 1$ or $k \geq 1$. Then there exists a factorization $z = uvw$, where $u = \epsilon$, $v = b$
(if $j \geq 1$) or $v = c$ (if $j = 0$) $w =$ the rest of the string, and then $uv^i w \in L$ for
all $i \geq 0$.

Case 2: $z = a^i b^j c^i$, for some integers i, j with $i \geq 1$. Pick $n = 1$. Then there
exists a factorization $z = uvw$, where $u = \epsilon$, $v = a$, and $w =$ the rest of the
string, and $uv^i w \in L$ for all $i \geq 0$.

The moral of the story is that the ordinary pumping lemma is not powerful enough to be
able to directly prove the non-regularity of certain non-regular languages. Other techniques
are needed.
Error 9. Choosing a string \(z = z(n) \), depending on \(n \), in such a way that

\[
\{ z(n) : n \geq 1 \}
\]

is a regular language.

If you choose the string \(z = z(n) \) to depend on \(n \) in such a way that

\[
L_z = \{ z(n) : n \geq 1 \}
\]

is itself regular, then the pumping lemma cannot succeed in proving \(L \) non-regular. For suppose it did. Then for each way of factoring \(z = uvw \) with \(|uv| \leq n\) and \(|v| \geq 1\), there would be a choice of \(i \geq 0 \) such that \(uv^i w \notin L \). But since \(L_z \subseteq L \), \(uv^i w \notin L_z \). Hence by the pumping lemma, \(L_z \) itself would not be regular. But \(L_z \) is in fact regular — a contradiction.

Hence one must choose the string \(z = z(n) \) in a sufficiently “irregular” way to ensure that \(L_z \) itself is not regular. As an example, consider the language

\[
L = \{ww : w \in \{a, b\}^*\}.
\]

One might be tempted to choose the string \(z = z(n) = a^{2n} \), which is certainly in \(L \). However, the associated language is

\[
L_z = \{a^{2n} : n \geq 1\} = (aa)^+,
\]

which is regular, so this choice for \(z \) cannot possibly succeed in proving that \(L \) is non-regular. So instead you would need to pick something like \(z = a^nba^n \).