
Week 01 Lecture: Software Process
CS 398: Application Development

Software process

Logistics

2

Lecture slides
Terminology

• Videos: recorded lectures.

• Videos and slides will be posted at the start of the week.

• Lectures: these online sessions.

• Slides may be updated right up to the start of class.

• I’ll typically post them after the lecture.

• I’ll also record the lectures. They will be found directly in

the MS Teams channel.

3

4

https://student.cs.uwaterloo.ca/~cs398/01-syllabus/1-weekly-schedule/
#week-1-introduction

Fri: Software Process

• Lectures: slides

• Videos: video, slides (notes)

• Activities: Create a project

◦ Create one project in GitLab that your team can share.

▪ Create under one person’s account, and then add everyone else on the team as
Owners/Developers (Members on the sidebar).

▪ Add the instructor and the course staff so that they can view your work! They don’t
need developer access, just the ability to view content. Refer to the list of course
staff for email addresses.

◦ Email the instructor with a list of team members and link to the project.

Today please!
I’d like to start Team

Meetings on Monday.

Next week!
• Product specification

• Project planning

• Requirements definition

5

Stretch Goal: I would like all
project teams formed by the

end of today so that I can
setup project channels over

the weekend!

i.e. Monday will (hopefully) be
shortened lectures, and time to

work on your project plan.

Using GitLab

6

https://git.uwaterloo.ca

7

Feature Description

Repository Version control for source code, or other files.

Issues Mechanism to track project tasks or issues. They can capture details, be assigned to a
milestone (e.g. Sprint 1), passed between people and have a status (e.g. Open, Closed).

Wiki Create online documents using Markdown. This is very useful for longer-documents
(e.g. design documents).

CI/CD Continuous Integration and Deployment. We can setup rules that will automatically test or
deploy our source code when it’s committed (or other conditions are met).

Snippets Share snippets of source code outside of the project.

What is GitLab?

Using GitLab

8

https://student.cs.uwaterloo.ca/~cs398/a-reference/1-gitlab/

To start using GitLab:

1.Create a new blank project in GitLab with a

meaningful name and description.

2.When it opens, select Members from the left-

hand menu. Invite each member of your
team with the appropriate role: typically,
Developer or Maintainer for full access.

3.Optional. Under Settings - General,
add a project description. Create and upload
an avatar!

Software Process

9

Process Activities
These activities are common to any type of project - not just software.

• Communication: Discuss the goals and requirements with the customer, potential users, and
other stakeholders. This is critical to ensure that we’re solving the correct problem.

• Planning: Identify people and resources, potential risks to the project, and developing a plan
to mitigate these risks. These are what we would typically call “project management” activities.

• Modelling: Design abstract models or representations of the product that you need to build.

• Construction: The process of building your product i.e. realizing your design. This may require
successive iterations to complete, and should also include some level of testing and validation.

• Deployment: Tasks required to produce a working product, and deliver it to the customer. This
includes collecting their ongoing feedback and making revisions as needed.

10

Do we do these
in order? In parallel?

How do they fit
together?

Discuss with
a builder.

Hire a project
manager.

Get blueprints!

The crew builds
your house.

You inspect the
results and take

possession!

Example:
building a house

Process Model?
We use the term process model to describe the structure that is given to these activities.

That is, it defines the complete set of activities that are required to specify, design, develop, test and
deploy a system, and describes how they fit together. A software process model is a type of process
model adapted to describe for software systems.

Below, we’ve listed the steps that we would typically consider as required for a software project.

11

Stringing them all in a line is the world’s simplest process model (assembly line?!)

Waterfall Model
In a 1970 paper, Winston Royce laid out a mechanism for formalizing the large-scale management of
software projects [Royce 1970], dubbed the Waterfall model. This envisions software production as a
series of steps, each cascading into the next one, much like a waterfall.

Software development is treated as a set of linear steps that are followed strictly in-order.

What is the problem
with this approach?

12

Other Process Models

V-Model lines up testing with the related area
of interest. Acknowledges connections, but
doesn’t handle change very well.

13

Spiral model defines iterations, starting with abstract
and progressing through levels of detail. Defined by
product manager to direct product versions.

14

https://agilemanifesto.org

What is Agile?
“Agile Software Development” isn’t a single process, but rather an approach to software development
that encompasses this philosophy. It encourages team structures and attitudes that make
communication easier (among team members, business people, and between software engineers
and their managers). It emphasizes rapid delivery of operational software, but also recognizes that
planning has its limits and that a project plan must be flexible. — Pressman & Maxim 2020.

Agility means recognizing that requirements and plans will change over time.

1. Software is too complex to design and build all at once. It’s more manageable to add features and
test incrementally.

2. Requirements will change during the development cycle, and projects need to be responsive to
this i.e. adaptable to change.

15

Challenges
1. It is difficult to predict in advance which software requirements will persist and which will

change. It is equally difficult to predict how customer priorities will change as the project
proceeds.

2. For many types of software, design and construction are interwoven. That is, both activities
should be performed in tandem so that design models are proven as they are created. It is
difficult to predict how much design is necessary before construction is used to prove the
design.

3. Analysis, design, construction, and testing are not as predictable as we might like (from a
planning point of view).

16

How do we create a process that can manage this type of unpredictability?

We use an iterative, evolutionary development model. Instead of building a “complete” system and
then asking for feedback, we instead attempt to deliver features in small increments, in a way that we
can solicit feedback continuously though the process.

17

What about this? It’s much better, but it feels like we’re iterating too many activities.
e.g. do we really want to iterate over requirements every iteration?

Scrum
Scrum is one (of many) different Agile methods.

Scrum breaks down a project into fixed-length iterations called sprints (typically 2-4 weeks in length for
each sprint). Sprints are defined so that you iterate on prioritized features in that time, and produce a
fully-tested and shippable product at the end of each sprint.

Typically you will iterate until you and the customer together decide that you are “done”.

18

Key Concepts

19

• Product Backlog is a list of all possible features and changes that could be considered. Collected from
the customer’s feedback, or ideas that the team has.

• Product Owner is the person responsible for gathering requirements and placing in the product backlog.

• Sprint Backlog is the set of features that are assigned to a sprint. This is the “scope” for that sprint.

• Scrum Master is the person that helps facilitate work during the sprint (like a “team lead”).

Criticism: Not everything
can be time boxed in 2-

week chunks.

Extreme Programming
Extreme Programming (XP) is an Agile methodology focused on best-practices for programmers. It was based on
a large-scale project that Kent Beck managed at Chrysler in the late 90s. It aims to produce higher-quality
software and a higher quality-of-life for the development team.

The five core values of XP are:

• Communication: The key to a successful project. It includes both communication within the team, and with
the customer. XP emphasizes face to face discussion with a white board (figurtively).

• Simplicity. Build the “simplest thing that will work”. Follow YAGNI (You Ain’t Gonna Need It) and DRY (Don’t
Repeat Yourself).

• Feedback. Team members solicit and react to feedback right away to improve their practices and their
product.

• Courage: The courage to insist on doing the “right thing”. The course to be honest with yourselves if
something isn’t working, and fix it.

• Respect: Respect your team members, and remember that development is a collaborative exercise.

20

21

XP launched with 12 “best practices” of software development.

Criticism: Some
of these are bad

ideas. Also, where’s
non-dev

activities?

Agile Principles
From these different Agile models, we can extract a set of useful guiding principles [Pressman 2018]. This is what we
aspire to do with our practices.

• Principle 1. Be agile. The basic tenets of agile development are to be flexible and adaptable in your approach, so
that you can adjust if needed between iterations. Keep your technical approach as simple as possible, keep the work
products you produce as concise as possible, and make decisions locally whenever possible.

• Principle 2. Focus on quality at every step. The focus of every process activity and action should be the quality of
the work produced.

• Principle 3. Be ready to adapt. When necessary, adapt your approach to constraints imposed by the problem, the
people, and the project itself.

• Principle 4. Manage change. The approach may be either formal or informal, but mechanisms must be established
to manage the way changes are requested, assessed, approved, and implemented.

• Principle 5. Build an effective team. Software engineering process and practice are important, but the bottom line
is people. Build a self-organizing team that has mutual trust and respect.

• Principle 6. Establish mechanisms for communication and coordination. Projects fail because important
information falls into the cracks and/or stakeholders fail to coordinate their efforts to create a successful end
product. Keep lines of communication open. When in doubt, ask questions!

22

Agile Process

23

This addresses some key criticisms of SCRUM:

1. It recognizes that Requirements definition can take time, and you want to do some degree of analysis ahead of time.

2. Iteration between Requirements/A&D allows us to perform Design Iterations with users.

3. The iterations at the bottom are functionally equivalent to a sprint.

Preliminary Activities

Week 1: Now

Week 2: Planning, Requirements

Week 3: Architecture

Week 4: Design

Sprints

We have 4 sprints.

Each one is 2 weeks long.

Weeks 5-6: Sprint 1

Weeks 7-9: Sprint 2

Weeks 10-11: Sprint 3

Weeks 12-13: Sprint 4

Sprint Breakdown

Week 1:

- Mon: Kickoff

- Wed/Fri: Work

Week 2:

- Mon/Wed: Work

- Fri: Demo

Agile Practices
Being Agile includes both the process AND some best practices that help us meet our goals.

We will discuss these in upcoming sections, in relation to the phase where they apply.

• User stories: describe features in a way that makes sense to customers.

• Test-driven development: tests are written before the code. This helps to enforce contracts/
interfaces.

• Refactoring: small continual improvements to code should be done routinely.

• Pair programming: critical code is written by two people working as a team.

• Code reviews: code changes need to be reviewed by one or more other developers on the team.

24

