
Week 02 Video: Kotlin 1
CS 398: Application Development

1

Why Kotlin?
There are literally hundreds of programming languages to choose from. How do
you pick a language?

There are some non-trivial considerations when picking a language:

• Does it offer the features and capabilities that you require?

• It is easy to work with? How productive can you be with it?

• How mature is the ecosystem around it? Does it have deep libraries, tooling?

2

Languages have different
strengths! This is why “language

wars” are mostly pointless.

• Is it designed to solve your type of problem?

• Does it make appropriate tradeoffs for the
type of software that you’re building?

Kotlin Features & Strengths

3

Kotlin is designed for building applications.

• Class-based, object-oriented, general-purpose language.

• Imperative, object-oriented, functional programming styles.

• Automatic memory management and GC; Iterable collections; Generics;
Broad framework support (graphics, UI).

• Modern features: named arguments, default arguments; NULL handling.

• 100% interoperable with Java source and libraries.

• Multi-platform: Windows, Linux, Mac (JVM or native); Mobile: Android
and iOS.

kotlinlang.org

Installation

4

You need the Kotlin compiler and runtime. We’ll run on the Java JVM.

1. Install Java 16 from adoptopenjdk.net (or another site of your choice). 

2. Install Kotlin from kotlinlang.org 

3. Check installation from shell:

jaffe@Bishop » java —-version

openjdk 16.0.1 2021-04-20

OpenJDK Runtime Environment (build 16.0.1+9-24)

OpenJDK 64-Bit Server VM (build 16.0.1+9-24, mixed mode, sharing)

jaffe@Bishop » kotlinc -version

info: kotlinc-jvm 1.6.10 (JRE 16.0.1+9-24)

IDE Installation

5

We highly recommend installing and using IntelliJ IDEA in this course.

IDEs offer advanced features: debugging, profiling, code-completion, refactoring.

It can he installed from https://www.jetbrains.com/idea/

• Community Edition is fine (you can get a free Student license for Ultimate
Edition as well as their other products)

• Runs on macOS (Intel or Apple), Windows, Linux.

• Includes Kotlin and Java plugins.

• Requires you to setup projects (which we will demonstrate/discuss soon).

Compilation

6

Compiled languages require an
explicit step to compile code and
generate native executables to a
specific architecture. e.g. C++.

Interpreted languages interpret the
source code (or some intermediate
code) at runtime, for the target
platform. e.g. Python.

Compiling optimizes startup and execution time at the cost of compilation time.

Interpreting gives us the ability to optimize code at runtime, and provides platform
independence.

7

https://www.fatalerrors.org/a/tomcat-deployment-of-java-application-

Java compiles to an intermediate
format (bytecode, or .class files),
which can be interpreted by a
Java Virtual Machine (JVM).

The JVM can also include a Just-
in-Time (JIT) compiler which
compiles and caches the results
at runtime, to optimize for a
specific target platform.

We have JVMs for every
conceivable platform (incl.
Raspberry Pi, refrigerators)

How is this relevant to Kotlin?

Other languages can compile to the JVM as well e.g. Scala, Clojure, Kotlin.

See https://en.wikipedia.org/wiki/List_of_JVM_languages

8

Kotlin can be compiled to native code, or to bytecode (intermediate
representation) which is interpreted at runtime.

• Kotlin/JVM compiles Kotlin code to JVM bytecode, which can run on any
Java virtual machine.

• Kotlin/Android compiles Kotlin code to native Android binaries, which
leverage native versions of the Java Library and Kotlin standard libraries.

• Kotlin/Native compiles Kotlin code to native binaries, which can run without
a virtual machine. It is an LLVM based backend for the Kotlin compiler and
native implementation of the Kotlin standard library.

• Kotlin/JS transpiles (converts) Kotlin to JavaScript. The current
implementation targets ECMAScript 5.1 (with plans to eventually target
ECMAScript 2015).

We’ll be using Kotlin/JVM, and later Kotlin/Android for this course.

9

Compiling & Executing Code

10

Hello World!

11

It’s tradition to write ”Hello World” when learning a new programming language.

Here’s the Kotlin version!

fun main() {

println("Hello World")

}

So how do we run it?

Yes, that’s all of it.

Running Kotlin Code

12

There are three primary ways of executing Kotlin code:

1. Read-Evaluate-Print-Loop (REPL): We can interact directly with the Kotlin
runtime, one line at-a-time.

2. KotlinScript: We can use Kotlin as a scripting language, by placing our code
in a script and executing directly from our shell.

3. Application: We can write standalone applications. This is what you’ll do
most of the time.

1. Read-Evaluate-Print-Loop (REPL)

13

REPL is a paradigm where you type and submit expressions to the compiler
one line-at-a-time. It’s commonly used with dynamic languages for debugging,
or checking short expressions.

It’s not intended as a means of writing full applications!

$ kotlinc

Welcome to Kotlin version 1.6.0 (JRE 16.0.1+9-24)

Type :help for help, :quit for quit

>>> val message = "Hello Kotlin”

>>> println(message)

Hello Kotlin!

2. KotlinScript

14

KotlinScript is Kotlin code in a script file that we can execute from our shell. Kotlin
compiles in the background before executing it.

kotlin.kts

 #!/usr/bin/env kotlinc -script

 val message = "Hello Kotlin”

 println(message)

$ chmod +x kotlin.kts

$./kotlin.kts

Hello Kotlin

This is useful, but not a straight-up replacement for shell scripts. Why?

3. Applications

15

Hello.kt

/*

 * Comment-blocks supported

 */

fun main(args: Array<String>) {

println(“Hello Kotlin”) // no semi-colon!

}

Kotlin applications are fully-functional, and can be compiled to native code, or
to the JVM. Kotlin application code looks a little like C, or Java. Here’s the
world’s simplest Kotlin program, consisting of a single main method.

The argument to main is optional.

No semi-colons!

No top-level class required. We
can have a top-level function.

16

Compiling and executing this is fairly simple:

$ kotlinc Hello.kt

$ ls Hello*

Hello.kt HelloKt.class

$ kotlin HelloKt

Hello Kotlin

By default, Kotlin targets the JVM,
which expects every file to contain
a top-level class. Kotlin creates a

“wrapper class” for our code.

$ javap HelloKt

Compiled from "Hello.kt"

public final class HelloKt {

 public static final void main();

 public static void main(java.lang.String[]);

}

17

The kotlinc compiler will compile each source file (.kt) into one or more class
files (.class). However, this can get messy if you have a large number of classes.

The best-practice is to put all of your output files into a JAR file (basically a ZIP
file with some extra data included). This allows you to distribute your application
to users as a single file instead of a series of .class files.

This example compiles “Hello.kt” into Hello.jar. The -include-runtime flag will
also include the Kotlin runtime classes.

 $ kotlinc Hello.kt -include-runtime -d Hello.jar

We can then run from the JAR file directly.

 $ java -jar Hello.jar

 Hello Kotlin!

The JVM includes all of the Java
libraries but not standard Kotlin

libraries. -include-runtime is
needed so that your applicaiton

has the Kotlin libs too.

JAR structure

18

Hello.jar
JAR files are created to distribute your
application. Typical contents:

• HelloKt.class – a class wrapper
generated by the compiler

• META-INF/MANIFEST.MF – a file
containing metadata.

• kotlin/* – Kotlin runtime classes not
included in the JDK.

Manifest File

19

The MANIFEST.MF file is autogenerated by the compiler, and included in the
JAR file. It tells the runtime ‘main‘ method to execute. e.g. ‘HelloKt.main()’.

 $ cat MANIFEST.MF

 Manifest-Version: 1.0

 Created-By: JetBrains Kotlin

 Main-Class: HelloKt

 $ java -jar Hello.jar

 Hello Kotlin!

 > Kotlin 1.5.20

 > Java 15.0.2

Running from a JAR file

20

The downside of this approach, of course, is that we need to specify ‘java -jar
filename.jar‘ to run our programs. It would preferable to have a single
executable that we can run.

We can create a script to launch our application, with the same effect:

$ cat hello

#!/bin/bash

java -jar hello.jar

$ chmod +x hello

$./hello

Hello Kotlin!

> Kotlin 1.3.72

> Java 11.0.7

Types

21

Type System

22

Programming languages can take different approaches to handling types:

• Dynamic typing: type is inferred at runtime. e.g. Python.

• Static typing: variable types need to be declared before use. e.g. C++, Java,
Kotlin. This eliminates runtime type errors.

Type systems are often referred to as strong or weakly typed.

• Strong typed: stricter typing rules at compile-time, and less coercion of
types, which leads to errors being caught at compile-time. e.g. Java, C++,
Kotlin.

• Weak typed: looser typing rules, and may allow automatic coercing of
variables to different types. Errors deferred to runtime. e.g. JavaScript.

Standard Types

23

Category Type Range Conversion (& Example)

Integer Short -32768 to 32767 128.toShort() 128

Int -231 to 231-1 2.78.toInt() 2

Long -263 to 263-1 B’.toLong() 66

Floating point Float 24 bits, 6-7 dec. 5.toFloat() 5.0

Double 53 bits, 15-16 dec. 1.15.toDouble() 1.15

Other Byte -128 to 127 ‘a’.toByte() 97

Char ASCII text 97.toChar() a

Boolean true | false ”true”.toBoolean() true

Standard Kotlin Types

https://kotlinlang.org/docs/reference/basic-types.html
Kotlin

primitives are heap-
allocated objects.

Operators

24

+, -, *, /, % Mathematical operators

= Assignment operator

&&, ||, ! Logical operators

==, != Structural equality

===. !== Referential equality

[] Index operators (call get, set)

Operators generally work as you would expect. Note the structural
and referential equality.

Variables

25

Variable declaration includes keywords to indicate mutability.

• Mutable: variable can be changed (var)

• Immutable: variable cannot be changed after initialization (val)

Kotlin emphasizes the use of immutable variables and data structures. This
follows best-practices in other languages (e.g.‘final‘ in Java, ‘const‘ in C++).

var a = 0 // Type inference e.g. auto a = 0
a = 5
val b = 1
b = 2 // ERROR: val cannot be reassigned
var c:Int = 10
val d:String // ERROR val needs to be initialized
val e:String = “A”

Strings

26

Strings are represented by the String type, and are immutable.

https://devdocs.io/kotlin~1.6/api/latest/jvm/stdlib/kotlin/-string/index

Strings are iterable, so string can be iterated over with a for-loop:

for (c in str) {

println(c)

}

Strings have properties and methods. e.g.

str.length, str.capitalize, str.drop(1), str.dropLast(5).

You can concatenate strings using the + operator.

val s = "abc" + 1

println(s + "def")

27

String Templates

Kotlin supports the use of string templates, so we can perform variable
substitution directly in strings. It’s a minor feature that is very commonly used!

val version = “1.6”

println("Kotlin $version")

> Kotlin 1.6

We can even evaluate expressions as part of a string.

val str = "abc"

println("$str.length is ${str.length}")

var n = 5

println("${if(n > 0) "+ve" else "-ve"}")

NULL data

28

What is NULL data? NULL is a special value that indicates that there is *no
data*. Kotlin has special semantics for dealing with nulls that avoids the need to
explicitly check for them.

By default, a variable cannot be assigned a NULL value.

A ? suffix on the type indicates that NULL-able.

val length: Int = null // ERROR

var name: String? = null // OK

If you have a nullable variable, then all calls to that variable must handle nulls.

 if (name != null) println(name)

These are treated
as different types by the

type system.

NULL syntax
We have special syntax to make dealing with NULl values a little easier.

?. is the “safe call operator”. A method call will only be invoked if the object is
not null.

var name: String? = null

val len = name?.length

?: is a ternary operator for NULL data (also called the Elvis operator)

 val len = name?.length ?: name?.length : 0

29

if exists return length else return zero

Functions

30

Functions

31

Functions are preceded with the ‘fun‘ keyword. Function arguments require
types, and are immutable.

fun hello() {

println("Hello World")

}

// Arguments require type annotations!

fun sum(a: Int, b: Int): Int {

return a + b

}

// Return type can be inferred

fun sum(a: Int, b: Int) = a + b

Default Arguments

32

We can supply default values for parameters. A parameter with a default value is
optional, since the caller can always assume that the default will be used.

// Second argument has a default value, so it’s optional

fun mult(a:Int, b:Int = 1): Int {

return a * b

}

mult(1) // 1

mult(5,2) // 10

mult() // error

// if is an expression and returns a value

fun minOf(a: Int, b: Int) = if (a < b) a else b

minOf(1,2) // 1

minOf(5,4) // 4

Named Arguments

33

You can (optionally) provide the argument names when you call a function. If you do
this, you can change the calling order!

#!/usr/bin/env kotlinc-jvm -script

fun repeat(s:String="*", n:Int=1):String {

 return s.repeat(n)

}

println(repeat()) // *

println(repeat(n=3)) // ***

println(repeat(n=5,s=“#")) // #####

Variable-Length Argument Lists

34

Finally, we can have a list of undefined length (i.e. evaluated at runtime).

// Variable number of arguments can be passed!

// Arguments in the list need to have the same type

fun sum(vararg numbers: Int): Int {

var sum: Int = 0

for(number in numbers) {

sum += number

}

return sum

}

sum(1) // 1

 
sum(1,2,3) // 6

sum(1,2,3,4,5,6,7,8,9,10) // 55

Examples

35

Example: mean.kts

36

Here’s a Kotlin snippet to calculate the mean of a series of numbers.

• ‘args‘ is an array of command-line arguments, automatically passed

• loop over ‘args‘ and sum the values to calculate the mean

mean.kts

var sum = 0f // Inferred as Float

for (arg in args) {

sum += arg.toFloat()

}

 println(sum/args.size)

See the public repo for some samples.

https://git.uwaterloo.ca/j2avery/cs346-public

Simple examples: /scripts

