
Week 03 Video: Analysis & Design 2
CS 398: Application Development

1

Architectural Patterns

2

What is an architectural pattern?
An architectural pattern (or architectural style) is the overall structure that we create to represent
our software. In describes how our components are organized and structured.

Similar to design patterns, an architectural style is a general solution that has been found to work
well at solving specific types of problems.

An architectural pattern describes both the topology (organization of components) and the
associated architectural characteristics.

• Architectural style :: Architecture

• Design pattern :: Design

3

The trick, of course, is
recognizing when a particular

pattern might be suitable.

Fundamental Patterns
Big Ball of Mud

A Big Ball of Mud is a haphazardly structured,
sprawling, sloppy, duct-tape-and-baling-wire,

spaghetti-code jungle.

These systems show unmistakable signs of
unregulated growth, and repeated, expedient

repair. Information is shared promiscuously among
distant elements of the system, often to the point

where nearly all the important information
becomes global or duplicated.

-- Foote & Yoder 1997.

4

Fundamental Patterns
Client-Server

Client-server architectures were the first major
break away from a monolithic architecture, and
split processing into front-end and back-end
pieces. This is also called a two-tier architecture.

There are different ways to divide up the system
into front-end and back-end. Examples include
splitting between desktop application (front-end)
and shared relational database (back-end), or web
browser (front-end) and web server (back-end).

Three-tier architectures were also popular in the
1990s and 2000s, which would also include a
middle business-logic tier.

5

Monolithic Patterns
Layered Architecture

A layered or n-tier architecture is a very common
architectural style that organizes software into horizontal
layers, where each layer represents some logical
functionality.

Standard layers in this style of architecture include:

• Presentation: UI layer that the user interacts with.

• Business Layer: application logic, or “business rules”.

• Persistence Layer: describes how to manage and
save application data.

• Database Layer: the underlying data store that
actually stores the data.

6

Note: these can be logical tiers (i.e. modules in the same system)

The major characteristic of a
layered architecture is that it enforces a
clear separation of concerns between

layers.

View

Controller

Model

Monolithic Patterns
Pipeline Architecture

A pipeline (or pipes and filters) architecture is appropriate when we want to
transform data in a sequential manner. It consists of pipes and filters:

Pipes form the communication channel between filters. Each pipe is
unidirectional, accepting input on one end, and producing output.

Filters are entities that perform operation on data that they are fed. Each
filter performs a single operation, and they are stateless. There are different
types of filters:

• Producer: The outbound starting point (also called a source).

• Transformer: Accepts input, optionally transforms it, and then
forwards to a filter (this resembles a map operation).

• Tester: Accepts input, optionally transforms it based on the results of a
test, and then forwards to a filter (this resembles a reduce operation).

• Consumer: The termination point, where the data can be saved,
displayed.

7

These abstractions may appear familiar,
as they are used in shell programming. It's

broadly applicable anytime you want to
process data sequentially according to

fixed rules.

Monolithic Patterns
Microkernel Architecture

A microkernel architecture (also called plugin architecture)
is a popular pattern that provides the ability to easily
extend application logic to external, pluggable
components.

This architecture works by focusing the primary
functionality into the core system, and providing
extensibility through the plugin system.

This allows the developer, for instance, to invoke
functionality in a plugin when the plugin is present, using a
defined interface that describes how to invoke it (without
need to understand the underlying code).

8

Examples of this architecture include web
browsers (which support extensions), and

IDEA (which support plugins for various
programming languages).

Distributed Patterns
Service Architecture

A services-based architecture splits
functionality into small "portions of an
application" (also called domain services) that
are independent and separately deployed.

Each service is a separate monolithic
application that provides services to the
application, and they share a single
monolithic database.

Each service provides coarse-grained domain
functionality.

9

e.g. a service might handle a customer checkout request to process an order; this could be processed
in its entirely by the service, as a single transaction.

UserCheckout PrintReports

Distributed Patterns
Microservice Architecture

A microservices architecture arranges an application as a
collection of loosely coupled services, using a lightweight
protocol.

 Some of the defining characteristics of microservices:

• Services are usually processes that communicate over a
network.

• Services are organized around business capabilities i.e. they
provide specialized, domain-specific services to
applications.

• Service are not tied to any one programming language,
platform or set of technologies.

• Services are small, decentralized, and independently
deployable

Each micro-service is expected to operate independently, and
contain all of the logic that it requires to perform its task.

10

Distributed Patterns
Microservice Architecture

Although the services themselves are independent, they need to be able to communicate.

This suggests that communication between microservices is a key requirement. The architect
utilizing this architecture would typically define a standard communication protocol e.g. message
queues, or REST.

Coordinating a multi-step process like this involves either cooperation between services, or a third
coordinating service.

11

What Architectural Style to Pick?
• Look at the characteristics of the specific

architectural style.

• What are the tradeoffs? There are positive
and negative characteristics of each.

• Conway’s Law

• Organizations will proceed a design that
mirrors their communication structure.

• e.g. layered architecture, with a
common technical database team.

• e.g. domain focused teams building
reusable business services.

12

Documenting Architecture

13

Drawing Diagrams
Architecture and design are all about making important, critical decisions early in the process. It's
extremely valuable to have a standard way of documenting systems, components, and interactions to
aid in visualizing and communicating our designs.

The Unified Modelling Language (aka UML) consists of an integrated set of diagrams, useful to
specify, visualize, construct and communicate a design. It’s a ratified standard managed through the
Object Management Group.

UML is a useful tool.

• Create whatever is useful for your architecture.

• You should NOT create diagrams for every components, interaction or state in your system. That's
overkill for most projects. Instead, focus on building a high-level component diagram that shows
the basic component interactions, which you can use to plan your system.

14

15

UML contains both structure and behaviour diagrams.

Structure diagrams show the structure of the system and its parts at different level of abstraction,
and shows how they are related to one another. Behaviour diagrams show the changes in the
system over time.

UML Structure Diagrams
Class Diagram

The class diagram is a central
modelling technique that runs
through nearly all object-oriented
methods.

This diagram describes the types
of objects in the system and
various kinds of static relationships
which exist between them.

(Too low level for this stage, but
mentioning it here for
completeness!)

16

UML Structure Diagrams
Component Diagram

A component diagram depicts
how components are wired
together to form larger
components or software systems.

It illustrates the architectures of
the software components and the
dependencies between them.

This is the lowest level an
architecture should attempt to
document.

17

UML Structure Diagrams
Deployment Diagram

The Deployment Diagram helps to
model the physical aspect of an
Object-Oriented software system.

It is a structure diagram which shows
architecture of the system as
deployment (distribution) of software
artifacts to deployment targets.

18

UML Behaviour Diagrams
Activity Diagram

Activity diagrams are graphical
representations of workflows of
stepwise activities and actions with
support for choice, iteration and
concurrency. It describes the flow
of control of the target system.

Activity diagrams are intended to
model both computational and
organizational processes (i.e.
workflows).

19

UML Behaviour Diagrams
Use Case Diagram

A use-case model describes a
system's functional requirements in
terms of use cases. It is a model of
the system's intended functionality
(use cases) and its environment
(actors).

Use cases enable you to relate
what you need from a system to
how the system delivers on those
needs.

20

