
Week 03 Lecture: Analysis & Design 2
CS 398: Application Development

Architectural Patterns

Q & A

2

Requirements :: Tasks
• Requirements represent functionality, or features that you wish to consider implementing. Requirements

are what you communicate and discuss.

• Tasks represent the work that needs to be done to realize your requirements. Tasks are what you do.

e.g.

• Requirement:

• Users should be able to sort the list of notes.

• Tasks:

• Make the existing list sort by default.

• Add a menu item that lets the user choose how to sort it.

• Add a toolbar button that lets them reserve the sort order.

• Write unit tests, etc.

3

Task

Subtask Subtask

Requirement

Task

What to include?

4

Brainstorming

Interviews
Potential

Requirements

Tasks include
requirements, plus

ALL other work that is
done in a sprint.

Customer “Make it yellow”

Platform Resizable windows,
menu items

Best Practices

IntelliJ project; build scripts;
unit testing framework

Credit to https://dilbert.com/strip/1995-11-17

• What do we log in GitLab?

• How many requirements should we have? Tasks vs. Requirements…

• How do we decide what to implement?

5

How to Log Requirements

What can we assume about our app?
• What is specified in the “Project specification”.

• You should have basic functionality for your platform.

• If you build a desktop app, you should have menus, hotkeys, resizable window etc.

• If you build a mobile app, you should use conventions there.

• You decide what platform as part of your requirements.

• What about the “cloud functionality” statement?

• I wish I hadn’t included this…

• For now, assume a single platform, monolithic application.

• Around sprint 4, we’ll pivot to store data in a service - we’ll discuss at that time.

6

Can we use third-party libraries?
Project Specification - https://student.cs.uwaterloo.ca/~cs398/01-syllabus/4-project-specification/#faq

4. Can we use third-party libraries, or are we supposed to build everything from scratch?

You can, and should, use libraries where appropriate - that's why they exist! They're often well-designed and
tested, and using them can result in much a higher quality product (plus, they save time). You can even use third-
party source code, within limits - see the course policies, specifically around what constitutes plagiarism. Tl;dr. You
can external source code as long as a single source doesn't constitute more than 10% of your project. More than
that, and it's considered a potential academic integrity offense. If you have questions about this, please just ask.

Course Policies - https://student.cs.uwaterloo.ca/~cs398/01-syllabus/6-policies/#plagiarism
Students are expected to either work on their own (in the case of quizzes), or work within a project team (for the
remaining deliverables in the course). All work submitted should either be their own or created by the team for use
in their project. However, we realize that it is common practice to use third-party libraries and sources found online
to solve programming problems. For this reason, the team is allowed to use third-party source or libraries for
their project provided that (a) they document the source of this contribution in source code, typically as a
comment, and in their README file, and (b) no single source constitutes more than 10% of their project.
Failure to acknowledge a source will result in a significant penalty (10% or more) of your final project grade,
depending on the severity of the infraction. Note that MOSS will be used to compare student assignments, and
that this rule also applies to copying from other student projects.

7

Architectural Patterns

8

Monolithic Patterns
Layered Architecture

A layered or n-tier architecture is a very common
architectural style that organizes software into horizontal
layers, where each layer represents some logical
functionality.

Standard layers in this style of architecture include:

• Presentation: UI layer that the user interacts with.

• Business Layer: application logic, or “business rules”.

• Persistence Layer: describes how to manage and
save application data.

• (Optional) Database Layer: the underlying data store
that actually stores the data.

9

Note: these can be logical tiers (i.e. modules in the same system)

The major characteristic of a
layered architecture is that it enforces a
clear separation of concerns between

layers.

Monolithic Patterns
Pipeline Architecture

A pipeline (or pipes and filters) architecture is appropriate when we want to
transform data in a sequential manner. It consists of pipes and filters:

Pipes form the communication channel between filters. Each pipe is
unidirectional, accepting input on one end, and producing output.

Filters are entities that perform operation on data that they are fed. Each
filter performs a single operation, and they are stateless. There are different
types of filters:

• Producer: The outbound starting point (also called a source).

• Transformer: Accepts input, optionally transforms it, and then
forwards to a filter (this resembles a map operation).

• Tester: Accepts input, optionally transforms it based on the results of a
test, and then forwards to a filter (this resembles a reduce operation).

• Consumer: The termination point, where the data can be saved,
displayed.

10

These abstractions may appear familiar,
as they are used in shell programming. It's

broadly applicable anytime you want to
process data sequentially according to

fixed rules.

Monolithic Patterns
Microkernel Architecture

A microkernel architecture (also called plugin architecture)
is a popular pattern that provides the ability to easily
extend application logic to external, pluggable
components.

This architecture works by focusing the primary
functionality into the core system, and providing
extensibility through the plugin system.

This allows the developer, for instance, to invoke
functionality in a plugin when the plugin is present, using a
defined interface that describes how to invoke it (without
need to understand the underlying code).

11

Examples of this architecture include web
browsers (which support extensions), and

IDEA (which support plugins for various
programming languages).

What Architectural Style to Pick?
• Look at the characteristics of the specific

architectural style.

• What are the tradeoffs? There are positive
and negative characteristics of each.

• Conway’s Law

• Organizations will proceed a design that
mirrors their communication structure.

• e.g. layered architecture, with a
common technical database team.

• e.g. domain focused teams building
reusable business services.

12

13

UML is a standard for diagramming systems. It contains both structure and behaviour diagrams.
Consider how it might help you communicate your structure to your team, or stakeholders.

Diagramming your Architecture

IMPORTANT: it’s more important to have useful and meaningful diagrams, than to adhere to the UML
standard. There are lots of examples of useful system diagrams that are less formal.

14

Activities

15

Planning
1. Create project plan

Requirements
1. Pick users, (optional) create personas

2. Interview people that fall into your role

3. Identify requirements, (affinity diagram)

4. Document requirements in GitLab

Analysis & Design
1. Determine technical impact

2. Choose architectural style

3. System diagram

16

TODO Today
Quiz in LEARN this

week! Opens now, due by
Fri 11:59 PM.

