
Week 04 Video: OO Kotlin
CS 398: Application Development

1

2

As an object-oriented
language, Kotlin supports these
foundational principles. Kotlin

is most similar to Java, but has
a number of enhancements

over that language.

Classes & Objects

3

Kotlin is a class-based object-oriented language, with some advanced features
that it shares with some other modern languages.

The ‘class‘ keyword denote a class.

class Person
val p = Person()

val or var can be applied to classes as well (which indicates whether p is read-
only or can be reassigned).

Classes can contains methods (aka class functions), and properties (to store
data).

No “new” keyword
required!

4

Sidebar: Visibility Modifiers
Annotations or visibility modifiers go before the constructor or function name.

Kotlin defaults to “public” visibility if you omit the modifier (which we will often do in examples).

Modifiers Class-Members Top-Level

public Visible everywhere Visible everywhere

private Visible in class only Visible in the same file

protected Visible in class/subclass Not allowed

internal Visible in module Visible in module

Properties
A property is a variable that is declared in a class, but outside of methods or
functions. They are analogous to class members, or fields in other languages.

class Person() {
 // string properties
 var lastName = "Vanilla"
 var firstName = "Ice"
 }

val p = Person()

// we can access properties directly
// this calls an implicit get() method; by default this just returns the value
println("${p.firstName} ${p.lastName}”)

> Vanilla Ice

5

Methods
Methods are just functions contained within a class, that are associated with an instance of that
class. You invoke then using the dot operator on an object (class instance).

class Person() {
 fun talk() {
 println("I am a human being!")
 }
}

val p = Person()
p.talk()

> I am a human being!

6

No real surprises
here….

Constructors

7

The primary constructor is part of the class declaration.

// class with a no-arg constructor (all these are equivalent)
class Person1
class Person1 { }
class Person1 constructor () { }

// parameters can be passed in, but will not persist unless saved
class Person2(firstName:String, lastName:String)

// val or var can be used to denote mutability
// these will also force these parameters to be exposed as properties
class Person3(val firstName: String, val lastName: String, var age: Int)

val student = Person3(“Sally”, “Zhang”)
println("${student3.firstName} ${student3.lastName}”)
// Sally Zhang

8

Classes may have secondary constructors, that delegate to the primary constructor:

// primary constructor
class Person(val name: String) {

var children: MutableList<Person> = mutableListOf<>()

// secondary constructor
constructor(name: String, parent: Person) : this(name) {
parent.children.add(this)

}
}

9

The primary constructor cannot do anything more than initialize properties!

class InitOrderDemo(name: String) {

 val first = "$name".uppercase()

 init {

 println("First init: $first")

 }

 val second = "${name.length}"

 init {

 println("Second init: $second")

 }

}

fun main() {

 val a = InitOrderDemo("Jeff")

}

"// First init: JEFF

"// Second init: 4

Any more complex
code here will not

compile.

10

Initialization code is considered part of the primary constructor. The order of
initialization is (1) primary constructor, (2) init blocks in listed order, and then (3)
secondary constructor (if appropriate).

class InitOrderDemo(name: String) {

 val first = "$name".uppercase()

 init {

 println("First init: $first")

 }

 val second = "${name.length}"

 init {

 println("Second init: $second")

 }

}

fun main() {

 val a = InitOrderDemo("Jeff")

}

"// First init: JEFF

"// Second init: 4

primary constructor, property assignment 1

init block called 2

init block called 3

start here 0

11

With a no-arg constructor, I’d recommend using that as the primary.

class InitOrderDemo() {

 var name:String = "Default"

 val first = "$name".uppercase()

 init { println("First init: $first”) }

 val second = "${name.length}"

 init { println("Second init: $second”) }

 constructor(name:String) : this() {

 this.name = name

 println("Second constructor: $name”)

 }

}

fun main() {

 val a = InitOrderDemo("Jeff")

}

"// First init: DEFAULT

"// Second init: 7

"// Second constructor: Jeff

delegates to the primary constructor 1

start here 0

primary constructor + property initialization 2

init block called 3

init block called 4

secondary constructor 5

12

Arguments to the primary constructor are properties: internal fields with the same name as the
arguments. Accessor methods are automatically created for them.

// name and age will be created as properties b/c of the val and var keywords.
class Person(val name: String, var age: Int)

val jeff = Person("Jeff", 50)
println("${jeff.name} is ${jeff.age}") // ok
jeff.name = "Jeffery" // error, since its immutable
jeff.age = 49 // ok, since it’s mutable

// we can override implicit getters and setters as well
class Person(var name: String, var surname: String) {
var fullName: String
get() = "$name $surname"
set(value) {
 (name, surname) = value.split(" ")

 }
}

Inheritance

13

Kotlin supports a single-inheritance model. Although you can inherit from any
number of interfaces, you cannot inherit from more than one implementation
class.

By default, classes and methods are ‘closed‘ to inheritance. If you want to
extend a class or method, you need to mark it as ‘open‘ for inheritance.

open class Person(val name: String) {
open fun hello() = "Hello, I am $name"

}

class PolishPerson(name: String) : Person(name) {
override fun hello() = "Dzien dobry, jestem $name"

}

Interfaces

14

An interface is a list of methods that together describe a set of expected
behaviours for a class, without any specific implementation being mandated.

It’s like an abstract class, that cannot be instantiated (and has no
implementation). This means that you must override interface functions.

interface Shape {

 fun dimensions(w: Double, h: Double)

 fun area(): Double

}

class Rectangle : Shape {

 var width: Double = 0.0

 var height: Double = 0.0

 override fun dimensions(w: Double, h: Double) { width = w; height = h }

 override fun area(): Double { return width * height }

}

Abstract Class

15

An abstract class is meant to be a base or parent class in a class hierarchy.
It can contain implementation code, but cannot be instantiated directly: it
can only serve as a base class.

abstract class Shape(var width: Double, var height: Double) {

 fun dimensions(w: Double, h: Double) { width = w; height = h }

 abstract val area: Double

}

class Rectangle(width: Double, height: Double) : Shape(width, height) {

 override val area: Double

 get() = width * height

}

fun main() {

 val rect = Rectangle(10.0,20.0)

 print(rect.area) "// 200.0

}

Note that we don’t have to override
the dimensions() function, but we

do have to override the area which
is abstract.

Data Class

16

A data class is a special type of class, which primarily exists to hold data, and doesn’t have
custom methods. Classes like this are more common than you expect – we often create trivial
classes to just hold data, and Kotlin makes it very easy.

Data classes have a number of built-in features:

data class Person(val name: String, var age: Int)
val mike = Person("Mike", 23)

// toString() displays all properties
print(mike.toString()) // Person(name=Mike, age=23)

// equals that compares all properties
print(mike == Person("Mike", 23)) // True
print(mike == Person("Mike", 21)) // False

17

// hashCode based on primary constructor properties
val hash = mike.hashCode()
print(hash == Person("Mike", 23).hashCode()) // T
print(hash == Person("Mike", 21).hashCode()) // F

// deconstruction based on properties
val (name, age) = mike
print("$name $age") // Mike 23

// copy that returns a copy of the object
// with concrete properties changed
val jake = mike.copy(name = "Jake") // copy

Enum classes
Enums in Kotlin are classes, so enum classes support type safety. This means that we can use
them as expected, but we can also use them in new ways, like in a ‘when’ expression.

 enum class Suits {
 HEARTS, SPADES, DIAMONDS, CLUBS
 }

 val suit = Suits.SPADES
 val color = when(suit) {
 Suits.HEARTS, Suits.DIAMONDS -> "red"
 Suits.SPADES, Suits.CLUBS -> "black"
 }
 println(color)
 // black

18

Advanced Topics
Extension functions

Add a method to an already existing class.

fun Int.isEven() = this % 2 == 0
> 5.isEven()

Infix functions
Special functions that can be called using the infix notation (omitting the dot and
the parentheses for the call).

infix fun Int.shl(x: Int): Int { ... }
> 1 shl 2

19

