
Week 04 Video: Analysis & Design 4
CS 398: Application Development

1

Design Patterns

Design Patterns

2

Well-designed solutions to common problems.

Design Patterns
A design pattern is a generalizable software solution to a common problem.

Using a known design pattern provides you with a template for a well-designed solution, which may
be superior to a home-grown solution. It also gives you common-ground for design discussions.

Patterns originated with Christopher Alexander, an architect, in 1977. Design patterns in software
gained popularity with the book Design Patterns: Elements of Reusable Object-Oriented Software
[Gamma 1994].

3

Criticisms
Design patterns have seen mixed-success. Some criticisms levelled:

• They are not comprehensive, and do not reflect all styles of software or all problems encountered.

• They are old-fashioned and do not reflect current software practices.

• They add flexibility, at the cost of increased code complexity.

These criticisms are not entirely fair.

• While they certainly do not represent all styles of problems that you might encounter, they do cover a
surprisingly broad range of them.

• Software design hasn’t changed that much. For some specific problems, there are design patterns that
are widely recognized as the preferred approach. You would be remiss to not consider using that pattern.

• They might add a small amount of complexity, but the benefit is well-structured, correctly working code.
This is usually a worthwhile tradeoff!

4

5

The original set of patterns were subdivided based on the types of problems they addressed.

• Creational Patterns control the dynamic creation of objects.

• Structural Patterns are about organizing classes to form new structures.

• Behavioural Patterns are about identifying common communication patterns between objects.

 
We’ll describe patterns at a high-level, and then call out some commonly used patterns for
application development.

Creational Patterns
Creational Patterns control the dynamic creation of objects.

6

Pattern Description

Abstract
Factory Provide an interface for creating families of related or dependent objects without specifying their concrete classes.

Builder Separate the construction of a complex object from its representation, allowing the same construction process to
create various representations.

Prototype Specify the kinds of objects to create using a prototypical instance, and create new objects from the ‘skeleton’ of
an existing object, thus boosting performance and keeping memory footprints to a minimum.

Singleton Ensure a class has only one instance, and provide a global point of access to it.

Design Patterns
Builder Pattern

Builder is a creational design pattern that lets you construct complex objects step by step. The pattern allows
you to produce different types and representations of an object using the same construction code.

Imagine that you have a class with a large number of variables that need to be specified when it is created.
e.g. a house class, where you might have 15-20 different parameters to take into account, like style, floors,
rooms, and so on. How would you model this?

• You could create a single class to do this, but you would then need a huge constructor to take into account
all of the different parameters.

• You could create subclasses, but then you have a potentially huge number of subclasses, some of which you
may not actually use.

7

Design Patterns
Builder Pattern

The builder pattern suggests that you put the
object construction code into separate
objects called builders.

The pattern organizes construction into a
series of steps.

• After calling the constructor, you call
methods to invoke the steps in the correct
order.

• You only call the steps that you require,
which are relevant to what you are
building.

8

Design Patterns
Builder Pattern

Even if you never utilize the Builder pattern directly, it's used in a lot of complex Kotlin and Android
libraries. e.g. the Alert dialogs in Android and other toolkits.

9

val dialog = AlertDialog.Builder(this)
 .setTitle("Title")
 .setIcon(R.mipmap.ic_launcher)
 .show()

Design Patterns
Singleton

Singleton is a creational design pattern that lets you ensure that a class has only one instance,
while providing a global access point to this instance.

Why is this pattern useful?

1. Ensure that a class has just a single instance. The most common reason for this is to control
access to some shared resource—for example, a database or a file.

2. Provide a global access point to that instance. Just like a global variable, the Singleton pat-
tern lets you access some object from anywhere in the program. However, it also protects that
instance from being overwritten by other code.

10

Design Patterns
Singleton

All implementations of the Singleton have
these two steps in common:

1. Make the default constructor private, to
prevent other objects from using the new
operator with the Singleton class.

2. Create a static creation method that
acts as a constructor.

11

public class Singleton {

 private static Singleton instance = null;
 private Singleton() {
 }

 public static Singleton getInstance() {
 if (instance == null) {
 synchronized (Singleton.class) {
 if (instance == null) {
 instance = new Singleton();
 }
 }
 }
 return instance;
 }
}

e.g.
var s = Singleton.getInstance()

Design Patterns
Singleton

In Kotlin, it's significantly easier.

The ‘object’ keyword in Kotlin defines a static
instance of a class. Effectively, an object is a
singleton and we can just call its methods
statically.

Like any other class, you can add properties
and methods if you wish.

12

object Singleton {
 init {
 println("Singleton class invoked.")
 }
 fun print(){
 println("Print method called")
 }
}

fun main(args: Array<String>) {
 Singleton.print()
 // echos "Print method called" to the screen
}

Structural Patterns
Structural Patterns are about organizing classes to form new structures.

13

Pattern Description

Adapter,
Wrapper

Convert the interface of a class into another interface clients expect. An adapter lets classes work together
that could not otherwise because of incompatible interfaces.

Bridge Decouple an abstraction from its implementation allowing the two to vary independently.

Composite Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Decorator Attach additional responsibilities to an object dynamically keeping the same interface. Decorators provide
a flexible alternative to subclassing for extending functionality

Proxy Provide a surrogate or placeholder for another object to control access to it.

Design Patterns
Adapter

Adapter is a structural design pattern that
allows objects with incompatible interfaces to
collaborate.

Imagine that you have a data source that is in
XML, but you want to use a charting library that
only consumes JSON data.

An adapter is an intermediate component that
converts from one interface to another. In this
case, it could handle the complexities of
converting data between formats.

14

Design Patterns
Adapter

The simplest way to implement this is using object
composition: the adapter is a class that utilizes an
interface provided to the main application (client).

1. The client is the class containing business logic
(i.e. an application class that you control).

2. The client interface describes the interface that
you have designed for your application.

3. The service is some useful library or service
(typically which is closed to you).

4. The adapter is the class that you create to serve
as an intermediary between these interfaces.

5. The client application isn't coupled to the
adapter because it works through the client
interface.

15

Behavioural Patterns
Behavioural Patterns are about identifying common communication patterns between objects.

16

Pattern Description

Command Encapsulate a request as an object, thereby allowing for the parameterization of clients with different requests, and
the queuing or logging of requests. It also allows for the support of undoable operations.

Iterator Provide a way to access the elements of an aggregate object sequentially without exposing its underlying
representation.

Memento Without violating encapsulation, capture and externalize an object’s internal state allowing the object to be restored
to this state later.

Observer Define a one-to-many dependency between objects where a state change in one object results in all its dependents
being notified and updated automatically.

Strategy Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

Visitor Represent an operation to be performed on the elements of an object structure. Visitor lets a new operation be
defined without changing the classes of the elements on which it operates.

Design Pattern
Command

Command is a behavioural design pattern that turns a request into a stand-alone object that contains
all information about the request (a command could also be thought of as an action to perform).

Imagine that you are writing a user interface, and you want to support a common action like Save.
You might invoke Save from the menu, or a toolbar, or a button. Where do you put the code that
actually handles saving the data?

If you attach it to the object that the user is interacting with, then you risk duplicating the code. e.g.

17

Design Pattern
Command

The Command pattern suggests that you encapsulate the details of the command that you want
executed into a separate request, which is then sent to the business logic layer of the application to
process.

18

Design Pattern
Command

The command class relationship to other
classes.

In other words, the specific instance of the
Command contains the code that should be
executed. Relevant UI elements would have
a reference to the same Command
instance, and could tell it to invoke itself as
needed.

SaveButton -> saveCommand.execute()

19

Design Pattern
Observer

Observer is a behavioural design pattern that
lets you define a subscription mechanism to
notify multiple objects about any events that
happen to the object they’re observing. This is
also called publish-subscribe.

The object that has some interesting state is
often called subject (or publisher). Objects that
want to track changes to the publisher’s state
are called observers (subscribers) of the state
of the publisher.

Subscribers register their interest in the subject,
who adds them to an internal subscriber list.

20

Design Pattern
Observer

When something interest happens, the
publisher notifies the subscribers through a
provided interface. The subscribers can then
react to the changes.

A modified version of Observer is the Model-
View-Controller (MVC) pattern, which puts a
third intermediate layer between the Publisher
and Subscriber, which manages user input.
That layer is not required for this pattern.

21

Resources
Diagrams and examples were taken in-part from the following sources.

• Eric Gamma et al. 1994. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional. ISBN 978-0201633610.

• Robert C. Martin. 2003. Agile Software Development: Principles, Patterns and Practices. Pearson.
ISBN 978-0135974445.

• Alexander Shvets. 2019. Dive Into Design Patterns. Refactoring.Guru (self-published).

• Alexey Soshin. 2018. Hands-On Design Patterns with Kotlin. Packt Publishing.

• Joel Spolsky. 2000. Things You Should Never Do, Part 1. https://www.joelonsoftware.com/
2000/04/06/things-you-should-never-do-part-i/

• Ugonna Thelma. 2020. The S.O.L.I.D. Principles in Pictures. https://medium.com/backticks-tildes/the-
s-o-l-i-d-principles-in-pictures-b34ce2f1e898

22

