
Week 04 Lecture: Analysis & Design 4
CS 398: Application Development

Design patterns

This Week
Mon (today)
• Lectures: UX Design & Prototyping; Software design principles; SOLID principles.

• Activities: Sketching/prototyping

Wed
• Lectures: Design Patterns

• Activities: Consider which patterns are relevant

• Identify 2 patterns that you plan to use.

• Mention them in your presentation (2-3 sentences listing them and describing their relevance).

• Add them to your system diagram.

Fri
• Lectures: software design video <— NOT testable, optional.

• Activities: Design review

• 10 min presentation, followed by 5 min Q&A session.

• Everyone must be present and everyone must present something.

• See the website for your time. One of the course staff will call you on your team channel at that time.

2

Review

3

Design Patterns
A design pattern is a generalizable software solution to a common problem.

Using a known design pattern provides you with a template for a well-designed solution, which may
be superior to a home-grown solution. It also gives you common-ground for design discussions.

Patterns originated with Christopher Alexander, an architect, in 1977. Design patterns in software
gained popularity with the book Design Patterns: Elements of Reusable Object-Oriented Software
[Gamma 1994].

4

Creational Patterns
Creational Patterns control the dynamic creation of objects.

5

Pattern Description

Abstract
Factory Provide an interface for creating families of related or dependent objects without specifying their concrete classes.

Builder Separate the construction of a complex object from its representation, allowing the same construction process to
create various representations.

Prototype Specify the kinds of objects to create using a prototypical instance, and create new objects from the ‘skeleton’ of
an existing object, thus boosting performance and keeping memory footprints to a minimum.

Singleton Ensure a class has only one instance, and provide a global point of access to it.

Structural Patterns
Structural Patterns are about organizing classes to form new structures.

6

Pattern Description

Adapter,
Wrapper

Convert the interface of a class into another interface clients expect. An adapter lets classes work together
that could not otherwise because of incompatible interfaces.

Bridge Decouple an abstraction from its implementation allowing the two to vary independently.

Composite Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Decorator Attach additional responsibilities to an object dynamically keeping the same interface. Decorators provide
a flexible alternative to subclassing for extending functionality

Proxy Provide a surrogate or placeholder for another object to control access to it.

Behavioural Patterns
Behavioural Patterns are about identifying common communication patterns between objects.

7

Pattern Description

Command Encapsulate a request as an object, thereby allowing for the parameterization of clients with different requests, and
the queuing or logging of requests. It also allows for the support of undoable operations.

Iterator Provide a way to access the elements of an aggregate object sequentially without exposing its underlying
representation.

Memento Without violating encapsulation, capture and externalize an object’s internal state allowing the object to be restored
to this state later.

Observer Define a one-to-many dependency between objects where a state change in one object results in all its dependents
being notified and updated automatically.

Strategy Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

Visitor Represent an operation to be performed on the elements of an object structure. Visitor lets a new operation be
defined without changing the classes of the elements on which it operates.

Activities

8

Planning
1. Create project plan

Requirements
1. Pick users, (optional) create personas

2. Interview people that fall into your role

3. Identify requirements, (affinity diagram)

4. Document requirements in GitLab

Analysis & Design
1. Determine technical impact

2. Choose architectural style

3. System diagram

9

TODO Today

4. UI Mockup (Low-fidelity Prototype)

5. Design Patterns

• Pick 2 to use in your design, and
add them to your design review.

Week 4 quiz is due Friday by 11:59 PM.

Design Review is Friday!
See the online schedule for your time slot.

10 min presentation.

