CS 398: Application Development

Week 05 Lecture: Using Git

Benefits; Git commands; Branching; Workflows.

Administrative

Design Reviews from last week
* Return later today or tomorrow morning.

* You will be provided with our marking sheets/comments, and your grade.

Quizzes
* Open Mon 10 AM every week.
* Close the following Sun 11:59 PM.

Return to Class
* Mon Feb 7th in-class (!)

This Week

Goal: Get everything setup for Sprint 1 kickoff (next Mon Feb 7th in-class)

Lectures This Week

* Mon: Git, Branching, Collaboration

* Wed: Gradle, Build Systems

* Fri: Building desktop applications OR Building mobile applications <— NOT on Quiz

Lectures Next Week

 Unit testing, Refactoring

Review

- Your source Flagged Your history Everyone’s
HOW does It WOrk? code directory (hidden) (hidden) ~history (hidden)

Git is designed around these core concepts:

Working : |
Directory Staging Area

* Working Directory: A copy of your repository, \

where you will make your changes before saving |
them in the repository. LAk > | C°mm"> | P“S“>

Local Repo Remote Repo

Checkout |

e Staging Area: A logical collection of changes from
the working directory that you want to collect and
work on together (e.g. it might be a feature that
resulted in changes to multiple files that you want
to save as a single change).

Merge |

Pull

VANV ANIWAN

* Repository: The location of the canonical version
of your source code (“Local Repo” in this
diagram).

Local Git Commands

These commands use
a local staging area
and repository.

Command Description Example
git init Create a new repository in the $ mkdir repo; cd repo
current directory. $ git init
Initialized empty Git repository in /repo/.git/
git add Add a file to the staging area $ vim readme.md
$ git add readme.md
git commit Commit all staged files to the repo |$ 9it commit -m “Added readme”
[master (root—-commit) d3c834b] Added readme
1 file changed, @ insertions(+), @ deletions(-)
create mode 100644 readme.md
git status Display the status of the current ~ |$ 9it status
staging area. On branch master
nothing to commit, working tree clean
git checkout Checkout a specific commit to this |$ 9it checkout main.kt
working area. Can use to revert a |Updated 1 path from index.
file.

Remote Git Commands

Command Description Example
git clone Clone the remote repository $ git clone https://git.uwaterloo.ca/j2avery/cs349-public.git repo
to a local directory. Cloning into ‘repo’...
remote: Enumerating objects: 531, done.
remote: Counting objects: 100% (531/531), done.
remote: Compressing objects: 100% (280/280), done.
remote: Total 2702 (delta 209), reused 320 (delta 100), pack-reused
2171
Receiving objects: 100% (2702/2702), 7.30 MiB | 13.00 MiB/s, done.
Resolving deltas: 100% (939/939), done.
git pull Merge changes into the local |$ ¢d repo
Already up to date.
git remote Modify the remote $ git remote
connection. origin

Concept: Branching

Think of a repository as a set of commits, all in a line. The main set of commits is like a trunk of a
tree. The trunk (also called Master or Main) is where commits are stored by default.

A branch is a fork in the tree, where we “split off” work and diverge from one of the commits.
Branches diverge from a specific commit, and do not include changed that happened on the
trunk after the branch occurred.

Feature - 2

/’\ m Master

(

O
A\

Feature -1

Feature branches, merged back into Main once the feature is complete and tested.

Branching Models: Trunk-Based Dev

In the trunk-based development model, all developers ® me

work on a single branch with open access to it. Often
it’s simply the main or trunk branch. They commit code
to it and run it.

2

x TAG: 2.0

It’'s also common to create short-lived feature
branches. Once code on their branch compiles and
passes all tests, you merge straight to master.

VERSION 2

TAG: 1.0

Characteristics

 Feature branches are short-lived.

[

* Development is continuous so merges are more VERSION 1

frequent and easier to resolve.

MASTER RELEASE
. BRANCHES
(Main or

Trunk)

* Integration testing becomes more important!

https://www.toptal.com/software/trunk-based-development-git-flow

Git Clients

Numerous git clients exist that provide an easier alternative to the command-line.

B .\ . (XX 1221 — lazygit — Ig — lazygit — 11235
eoe fayr=Y < 22 R e A B #v ¢ Q Status Unstaged Changes
¥ master == S — 1010 1221 - master diff --git a/lectures/week05-infrastructure/@5-01-using-git.key b/lectur
5 Working Copy Q B B es/week@5-infrastructure/05-01-using-git.key
© History —Files - Submodules———————— |index 57f3495..9bbf34c 100755
|lectures/week@5-infrastructure v Binary files a/lectures/week@5-infrastructure/05-01-using-git.key and b/
LS e 20 |- M @5-01-using-git.key lectures/week@5-infrastructure/@5-01-using-git.key differ

11 Pull Requests Git slides complete. Renamed to match present.

2022

& Settings

Expanded desktop-application slides to include...

-01-26 Expand A Showing 2 od additions and 28 deletiol Local Branches - Remotes - Tags
+ B2 origin Expanded reference setup to include IntelliJ wa. > modiios 1 wwwicontent S - % master 10:0
¥ master 022 ed [wwwicontentiz- e
Added weeka-02 lecture slides. modited (T wicontentyz sefinonsl-ndexm
¥ ued > modified [wwwlcontent/2-introduction

202:

Expanding desktop/JavaFX slices with more e; feontent/2-ntroc
ontentj2-ntrod
Revising week § infrastructure slides.

2022-01-23 content/2

o Added weekd lectures. >

Commits - Reflog
leadae4s Git slides complete. Ren
2accebdo Expanded desktop-applica
6dadc58c Expanding git slides. Re
0f36f1leb Cleaned up readme, term
7d7c15ad Expanded reference setup
ede2b54f Added week4-02 lecture s
aeadfac9 Expanding desktop/JavaFX
1 of 102

) Finished adding design pattern examples. Lect.

2022-01-23

Revising week 4 slides. > -architecture-design/7-umlj_index.md

fa-architecture-..m|
Added more design pattern examples.
-architecture-..tsfclass-dia

Added design pattern examples > architecture

> vwwlcontent/é-architecture-...setsfdeployment-diagram.png

: Added design principles, examples.

of
scroll left/right, esc: cancel, pgup/pgdown: scroll, q: quit e Ask Question 0.31.4

architecture-...raction-overview-diagram.png

o~ ﬁ. 5418

www/content/d-architecture ence-diagram.png,

Fixing dependency inversion in slides.

https://www.git-tower.com https://github.com/jesseduffield/lazygit

Activities

Activities This Week

Setup GitLab
 All requirements logged in Git and unassigned.
* Milestones (sprints) setup.

* Infrastructure tasks moved to Sprint 0, closed as appropriate.

Source code

» Starting project committed to Git repo.

» Git works across all machines. Everyone has a git client, and knows how to git pull/push.
* Intellid is setup for everyone, and the starting project builds.

Technical Investigation
» Choose toolkits; investigate libraries

* Think about data format! How will you store, represent this data?

12

