
Week 05 Lecture: Using Git
CS 398: Application Development

Benefits; Git commands; Branching; Workflows.



Administrative
Design Reviews from last week 
• Return later today or tomorrow morning.

• You will be provided with our marking sheets/comments, and your grade.


Quizzes 
• Open Mon 10 AM every week.

• Close the following Sun 11:59 PM.


Return to Class 
• Mon Feb 7th in-class (!)

2



This Week
Goal: Get everything setup for Sprint 1 kickoff (next Mon Feb 7th in-class)


Lectures This Week 
• Mon: Git, Branching, Collaboration

• Wed: Gradle, Build Systems

• Fri: Building desktop applications OR Building mobile applications <— NOT on Quiz 

Lectures Next Week 
• Unit testing, Refactoring

3



Review

4



5

Git is designed around these core concepts:


• Working Directory: A copy of your repository, 
where you will make your changes before saving 
them in the repository.


• Staging Area: A logical collection of changes from 
the working directory that you want to collect and 
work on together (e.g. it might be a feature that 
resulted in changes to multiple files that you want 
to save as a single change).


• Repository: The location of the canonical version 
of your source code (“Local Repo” in this 
diagram).

How does it work? Your source 
code directory

Flagged 
(hidden)

Your history 
(hidden)

Everyone’s 
history (hidden)



Local Git Commands

6

Command Description Example
git init Create a new repository in the 

current directory. 
$ mkdir repo; cd repo

$ git init

Initialized empty Git repository in /repo/.git/

git add Add a file to the staging area $ vim readme.md

$ git add readme.md

git commit Commit all staged files to the repo $ git commit -m “Added readme”

[master (root-commit) d3c834b] Added readme

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 readme.md

git status Display the status of the current 
staging area.

$ git status

On branch master

nothing to commit, working tree clean

git checkout Checkout a specific commit to this 
working area. Can use to revert a 
file.

$ git checkout main.kt

Updated 1 path from index.

These commands use 
a local staging area 

and repository.



Remote Git Commands

7

Command Description Example
git clone Clone the remote repository 

to a local directory.
$ git clone https://git.uwaterloo.ca/j2avery/cs349-public.git repo

Cloning into 'repo'...

remote: Enumerating objects: 531, done.

remote: Counting objects: 100% (531/531), done.

remote: Compressing objects: 100% (280/280), done.

remote: Total 2702 (delta 209), reused 320 (delta 100), pack-reused 
2171

Receiving objects: 100% (2702/2702), 7.30 MiB | 13.00 MiB/s, done.

Resolving deltas: 100% (939/939), done.

git pull Merge changes into the local 
repo.

$ cd repo

$ git pull

Already up to date.

git remote Modify the remote 
connection.

$ git remote

origin



8

Think of a repository as a set of commits, all in a line. The main set of commits is like a trunk of a 
tree. The trunk (also called Master or Main) is where commits are stored by default. 


A branch is a fork in the tree, where we “split off” work and diverge from one of the commits. 
Branches diverge from a specific commit, and do not include changed that happened on the 
trunk after the branch occurred.

Concept: Branching

Feature branches, merged back into Main once the feature is complete and tested.



Branching Models: Trunk-Based Dev
In the trunk-based development model, all developers 
work on a single branch with open access to it. Often 
it’s simply the main or trunk branch. They commit code 
to it and run it.


It’s also common to create short-lived feature 
branches. Once code on their branch compiles and 
passes all tests, you merge straight to master. 


Characteristics


• Feature branches are short-lived. 


• Development is continuous so merges are more 
frequent and easier to resolve.


• Integration testing becomes more important!

9

https://www.toptal.com/software/trunk-based-development-git-flow

(Main or 
Trunk)



Git Clients
Numerous git clients exist that provide an easier alternative to the command-line.

10

https://www.git-tower.com https://github.com/jesseduffield/lazygit



Activities

11



12

Activities This Week
Setup GitLab 
• All requirements logged in Git and unassigned.

• Milestones (sprints) setup.

• Infrastructure tasks moved to Sprint 0, closed as appropriate.


Source code

• Starting project committed to Git repo.

• Git works across all machines. Everyone has a git client, and knows how to git pull/push.

• IntelliJ is setup for everyone, and the starting project builds.


Technical Investigation

• Choose toolkits; investigate libraries

• Think about data format! How will you store, represent this data? 


