
Using Git
CS 398: Application Development

Benefits; Git commands; Branching; Workflows.

Version Control w. Git

2

Version Control Systems (VCS) are software systems that track changes to your files. Examples:
Git, Subversion (SVN), Perforce.

Git tracks changes
to sets of files over

time.

Why version control?
A VCS provides some major benefits:

• History: a VCS provides a long-term history of every file. This includes tracking when files
were added, or deleted, and every change that you’ve made.

• Versions: the ability to version sets of files together. Did you break something? You can
always unwind back to the “last good” change that was saved, or ever compare your current
code with the previously working version to identify an issue.

• Collaboration: a VCS provides the necessary capabilities for multiple people to work on the
same code simultaneously, while keeping changes isolated.

3

Version control systems replace
the common practice of making

backups of your source files. (e.g.
app.c.1, app.c.2 and so on).

Git Basics

4

5

Git is designed around these core concepts:

• Working Directory: A copy of your repository,
where you will make your changes before saving
them in the repository.

• Staging Area: A logical collection of changes from
the working directory that you want to collect and
work on together (e.g. it might be a feature that
resulted in changes to multiple files that you want
to save as a single change).

• Repository: The location of the canonical version
of your source code (“Local Repo” in this
diagram).

How does it work? Your source
code directory

Flagged
(hidden)

Your history
(hidden)

Everyone’s
history (hidden)

6

A repository can be local or remote:

• A local repository is where you might store projects
that you don’t need to share with anyone else (e.g.
these notes are in a local git repository on my
computer).

• A remote repository is setup on a central server,
where multiple users can access it (e.g. GitLab, GitHub
effectively do this, by offering free hosting for remote
repositories).

You can move changes from the local to remote
repository using “push” and “fetch” commands.

A local repository is only available on your local
machine. You need a remote repository if you want to

share your code with someone else.

Local Git Commands

7

Command Description Example
git init Create a new repository in the

current directory.
$ mkdir repo; cd repo
$ git init
Initialized empty Git repository in /repo/.git/

git add Add a file to the staging area $ vim readme.md
$ git add readme.md

git commit Commit all staged files to the repo $ git commit -m “Added readme”
[master (root-commit) d3c834b] Added readme
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 readme.md

git status Display the status of the current
staging area.

$ git status
On branch master
nothing to commit, working tree clean

git checkout Checkout a specific commit to this
working area. Can use to revert a
file.

$ git checkout main.kt
Updated 1 path from index.

These commands use
a local staging area

and repository.

8

Local Workflow
A local Git workflow looks like this:

1. Create a project directory for your source code.

2. Initialize a git repository in this directory (git init).
This doesn’t change your source code, but adds a
hidden .git directory to track it as a repository.

3. Make changes to your source code in your favourite
editor (e.g. add a new feature, fix a bug!).

4. Add the changed files to your staging area (git add).
Commit the files in the staging area to save to the
repository (git commit). This two-step process ensures
that these files are tracked and versioned as a single
change.

5. Check that your changes have been saved by using
git status.

Using a Remote Repository
You can use Git locally without any restrictions. However, we
often want a remote repository:

• This provides a single “source of truth” that contains
everyone’s changes (and which we can backup!)

• It helps us coordinate changes with our team (i.e. if I make a
change, it gives me a mechanism to share that change with
everyone else).

To work with a remote repository:

• We need to setup a remote repository, or use an existing
hosting site (e.g. GitLab, GitHub).

• We add a connection between local and remote repositories.

• We continue to make changes locally, but then “push” the
changes to the remote as an additional step (git push).

9

Remote Git Commands

10

Command Description Example
git clone Clone the remote repository

to a local directory.
$ git clone https://git.uwaterloo.ca/j2avery/cs349-public.git repo
Cloning into 'repo'...
remote: Enumerating objects: 531, done.
remote: Counting objects: 100% (531/531), done.
remote: Compressing objects: 100% (280/280), done.
remote: Total 2702 (delta 209), reused 320 (delta 100), pack-reused
2171
Receiving objects: 100% (2702/2702), 7.30 MiB | 13.00 MiB/s, done.
Resolving deltas: 100% (939/939), done.

git pull Merge changes into the local
repo.

$ cd repo
$ git pull
Already up to date.

git remote Modify the remote
connection.

$ git remote
origin

Remote Workflow
The common workflow for working with a remote repository is similar to the local workflow:

1. Initialize a git repository in the remote directory (e.g. in GitLab create a new project).

2. Clone the remote repository to create a local project directory (git clone using the URL of
the repo that you created in the previous step).

3. Make changes to your source code in your favourite editor (e.g. add a new feature, fix a bug!).

4. Add the changed files to your staging area (git add). Commit the files in the staging area to
save to the repository (git commit). This two-step process ensures that these files are
tracked and versioned as a single change.

5. Push the changes from your local repo to the remote repo (git push).

6. Check that your changes have been saved by using git status.

11

remote

remote

remote

remoteChanges from previous workflow are marked with

Branching

12

13

Think of a repository as a set of commits, all in a line. The main set of commits is like a trunk of a
tree. The trunk (also called Master or Main) is where commits are stored by default.

A branch is a fork in the tree, where we “split off” work and diverge from one of the commits.
Branches diverge from a specific commit, and do not include changed that happened on the
trunk after the branch occurred.

Concept: Branching

Feature branches, merged back into Main once the feature is complete and tested.

14

We often branch to isolate our work from any other changes on the trunk. Once we have a
feature implemented and tested, we can merge our changes back into the master branch.

These type of branches are called feature branches and isolate untested work.

A typical workflow for adding a feature would be:

• Create a feature branch for that feature.

• Make changes on your branch only. Test everything.

• (Optional) Have it code reviewed by someone on your team (see Pull Request).

• Switch back to master and merge from your feature branch to the master branch.

Feature Branches

15

$ git checkout -b test // create branch
Switched to a new branch 'test'

$ vim file1.md // make some changes
$ git add file1.md
$ git commit -m "Committing changed to file1.md"

$ git checkout master // switch to master
$ git merge test // merge changes from test
Updating 09e1947..ebb5838
Fast-forward
 file1.md | 136 +++
 1 file changed, 118 insertions(+), 18 deletions(-)

$ git branch -d test // remove branch (optional)
Deleted branch test (was ebb5838).

16

Collaborative Workflow
The biggest challenge when working with multiple people on the same code is that you all may
want to make changes to the code at the same time. Git greatly simplifies the process.

Git uses branches to isolate changes from one another. You think of your source code as a
tree, with one main trunk. By default, everyone in git is working from the “trunk”, typically
named master or main. A branch lets you work on a separate version of the source code.

Branching Strategies
How do you coordinate branches?

There are different approaches that have been taken, but some
common ideas:

1. Create feature branches for development.

2. Merge changes from feature branches to trunk; the main trunk
should always build properly.

1. Best practice: have tests on main that will automatically
execute when you merge.

2. You should always be ready to release from trunk.

3. Release from main branch.

17

Branching Models: Git Flow
In the Git flow model, you have two main branches:

• Develop where all development takes place. Strictly
controlled.

• Main or trunk that is only used for release.

Developers create feature branches from the development
branch and work on them. Once features are complete, they
create pull requests and other developers review their
changes.

Eventually, a collection of features are approved and merged
back to the trunk (main) and released as a product version.

Characteristics

• Long-lived feature branches, mean that merges are
difficult.

• Allows careful control over integrating
18

https://www.toptal.com/software/trunk-based-development-git-flow

(Main or Trunk)

Branching Models: Trunk-Based Dev
In the trunk-based development model, all developers
work on a single branch with open access to it. Often
it’s simply the main or trunk branch. They commit code
to it and run it.

It’s also common to create short-lived feature
branches. Once code on their branch compiles and
passes all tests, you merge straight to master.

Characteristics

• Feature branches are short-lived.

• Development is continuous so merges are more
frequent and easier to resolve.

• Integration testing becomes more important!

19

https://www.toptal.com/software/trunk-based-development-git-flow

(Main or
Trunk)

Best Practices: TDD & Refactoring
TDD has two characters: short and correctness. TDD development cycle is very short, which
make frequent commit possible. And on the other hand, the tests make sure that the code meet
the requirements. The test coverage is also guaranteed with TDD. With the help of TDD, team
members are able to commit to the trunk branch frequently and confidently.

20

Advanced Git

21

.gitignore
• By default, git assumes that every file and directory in

your working directory is important.

• This is not true! You will have temp files and other files
you don’t want to save.

• To exclude files, add the filename to a file
named .gitignore in the top of your working directory.

• Files or file patterns listed in this file will be ignored by git
add, status etc.

22

.DS_Store
*.class
build/
out/
www/public

.gitignore for the course website

Handling merges
• We’ve been hand-waving one of the most challenging issues in Git: merges.

• So what happens when you and one of your teammates both make changes to the same file?

• When you commit, git merges your changes into the existing files.

• If it can do this without any conflicts (i.e. you were working on different files, or different
parts of the same files), is merges automatically. Most of the time this is what happens.

• Occasionally you get an error when git can’t resolve it.

23
https://www.raywenderlich.com/books/advanced-git/v2.0/chapters/2-merge-conflicts

How to merge
• Use “git pull” to pull the remote changes to your working area.

• You results will be a merge conflict. Git will tell you the source of the conflict.

24

• Edit the conflicting file and manually make the change that you want (i.e. decide which change to
keep!)

• Commit the changes and “git push” to the remote repo.

Editing conflicts
• When editing the conflicting files, Git will show you both sets of proposed changes.

• You are expected to manually edit the file into a “good” state.

25

Stashes
• Sometimes you have changes that you’re not ready to commit, but you want to look at a

different version.

• You can stash your changes temporarily and then restore them later.

26

Command Description Example

git stash Stash the current changes. $ git stash

git stash list Show any stashes. $ git stash list

git stash pop Restore the stash to the working
directory.

$ git stash pop

Git Clients
Numerous git clients exist that provide an easier alternative to the command-line.

27

https://www.git-tower.com https://github.com/jesseduffield/lazygit

28

https://xkcd.com/1597/

