CS 398: Application Development

Using Git

Benefits; Git commands; Branching; Workflows.

Version Control w. Git

Version Control Systems (VCS) are software systems that track changes to your files. Examples:
Git, Subversion (SVN), Perforce.

@“zﬂﬂﬂiﬂ

ece ece
I I :
v — > E— > Git tracks changes
our — — 0
roject = - to sets Qf files over
time.

. Add headline - -
v e > Create "about" page > Change page layout
VCS

index.html about.html about.html

<h1>Headline</hl> <html> <div>new content</div>

.. <head>

photo.png

Why version control?

A VCS provides some major benefits:

History: a VCS provides a long-term history of every file. This includes tracking when files
were added, or deleted, and every change that you’ve made.

Versions: the ability to version sets of files together. Did you break something? You can
always unwind back to the “last good” change that was saved, or ever compare your current
code with the previously working version to identify an issue.

Collaboration: a VCS provides the necessary capabilities for multiple people to work on the
same code simultaneously, while keeping changes isolated.

Version control systems replace
the common practice of making

backups of your source files. (e.g.
app.c.1, app.c.2 and so on).

Git Basics

- Your source Flagged Your history Everyone’s
HOW does It WOrk? code directory (hidden) (hidden) ~history (hidden)

Git is designed around these core concepts:

Working : |
Directory Staging Area

* Working Directory: A copy of your repository, \

where you will make your changes before saving |
them in the repository. LAk > | C°mm"> | P“S“>

Local Repo Remote Repo

Checkout |

e Staging Area: A logical collection of changes from
the working directory that you want to collect and
work on together (e.g. it might be a feature that
resulted in changes to multiple files that you want
to save as a single change).

Merge |

Pull

VANV ANIWAN

* Repository: The location of the canonical version
of your source code (“Local Repo” in this
diagram).

A repository can be local or remote: /

‘ [\;Yr%ré(tlgr%/ [Staging Area ‘ Local Repo :
* A local repository is where you might store projects

that you don’t need to share with anyone else (e.g. — > | cOmmn> e >
these notes are in a local git repository on my

computer). < Gheckot |

* A remote repository is setup on a central server, h‘m-

where multiple users can access it (e.g. GitLab, GitHub < Merge I
effectively do this, by offering free hosting for remote

repositories). <

Pull

You can move changes from the local to remote
repository using “push” and “fetch” commands.

A local repository is only available on your local
machine. You need a remote repository if you want to
share your code with someone else.

Local Git Commands

These commands use
a local staging area
and repository.

Command Description Example
git init Create a new repository in the $ mkdir repo; cd repo
current directory. $ git init
Initialized empty Git repository in /repo/.git/
git add Add a file to the staging area $ vim readme.md
$ git add readme.md
git commit Commit all staged files to the repo |$ 9it commit -m “Added readme”
[master (root—-commit) d3c834b] Added readme
1 file changed, @ insertions(+), @ deletions(-)
create mode 100644 readme.md
git status Display the status of the current ~ |$ 9it status
staging area. On branch master
nothing to commit, working tree clean
git checkout Checkout a specific commit to this |$ 9it checkout main.kt
working area. Can use to revert a |Updated 1 path from index.
file.

Local Workflow

A local Git workflow looks like this:

1.

2.

Create a project directory for your source code.

Initialize a git repository in this directory (it init).
This doesn’t change your source code, but adds a
hidden .git directory to track it as a repository.

Make changes to your source code in your favourite
editor (e.g. add a new feature, fix a bug!).

Add the changed files to your staging area (git add).
Commit the files in the staging area to save to the
repository (git commit). This two-step process ensures
that these files are tracked and versioned as a single
change.

Check that your changes have been saved by using
git status.

Local Repo Remote Repo

Working
Directory

\

Staging Area

Add > [Commit[>

Checkout

Merge

Pull

Using a Remote Repository

You can use Git locally without any restrictions. However, we
often want a remote repository:

» This provides a single “source of truth” that contains
everyone’s changes (and which we can backup!)

* It helps us coordinate changes with our team (i.e. if | make a
change, it gives me a mechanism to share that change with
everyone else).

To work with a remote repository:

* We need to setup a remote repository, or use an existing
hosting site (e.g. GitLab, GitHub).

* We add a connection between local and remote repositories.

* We continue to make changes locally, but then “push” the
changes to the remote as an additional step (git push).

Working
Directory

Staging Area | =

Local Repo Remote Repo

Add > [Conamit[> [Push >

Checkout

Merge

VANV ANIWAN

Remote Git Commands

Command Description Example
git clone Clone the remote repository $ git clone https://git.uwaterloo.ca/j2avery/cs349-public.git repo
to a local directory. Cloning into ‘repo’...
remote: Enumerating objects: 531, done.
remote: Counting objects: 100% (531/531), done.
remote: Compressing objects: 100% (280/280), done.
remote: Total 2702 (delta 209), reused 320 (delta 100), pack-reused
2171
Receiving objects: 100% (2702/2702), 7.30 MiB | 13.00 MiB/s, done.
Resolving deltas: 100% (939/939), done.
git pull Merge changes into the local |$ ¢d repo
Already up to date.
git remote Modify the remote $ git remote
connection. origin

10

Remote Wo rkfl OW Changes from previous workflow are marked with remote

The common workflow for working with a remote repository is similar to the local workflow:

l.

2.

Initialize a git repository in the remote directory (e.g. in GitLab create a new project). remote

Clone the remote repository to create a local project directory (git clone using the URL of
the repo that you created in the previous step). remote

Make changes to your source code in your favourite editor (e.g. add a new feature, fix a bug!).
Add the changed files to your staging area (git add). Commit the files in the staging area to
save to the repository (git commit). This two-step process ensures that these files are
tracked and versioned as a single change.

Push the changes from your local repo to the remote repo (it push). remote

Check that your changes have been saved by using git status.

11

Branching

Concept: Branching

Think of a repository as a set of commits, all in a line. The main set of commits is like a trunk of a
tree. The trunk (also called Master or Main) is where commits are stored by default.

A branch is a fork in the tree, where we “split off” work and diverge from one of the commits.
Branches diverge from a specific commit, and do not include changed that happened on the
trunk after the branch occurred.

Feature - 2

/’\ m Master

(

O
A\

Feature -1

Feature branches, merged back into Main once the feature is complete and tested.

13

Feature Branches

We often branch to isolate our work from any other changes on the trunk. Once we have a
feature implemented and tested, we can merge our changes back into the master branch.
These type of branches are called feature branches and isolate untested work.

A typical workflow for adding a feature would be:

Create a feature branch for that feature.

Make changes on your branch only. Test everything.

(Optional) Have it code reviewed by someone on your team (see Pull Request).

Switch back to master and merge from your feature branch to the master branch.

14

$ git checkout -b test // create branch
Switched to a new branch 'test'

$ vim filel.md // make some changes
$ git add filel.md
$ git commit -m "Committing changed to filel.md"

$ git checkout master // switch to master

$ git merge test // merge changes from test

Updating 09e1947..ebb5838

Fast-forward
filel.md | 136 +++++++++++++++++++H
1 file changed, 118 insertions(+), 18 deletions(-)

$ git branch -d test // remove branch (optional)
Deleted branch test (was ebb5838).

15

Collaborative Workflow

The biggest challenge when working with multiple people on the same code is that you all may
want to make changes to the code at the same time. Git greatly simplifies the process.

Git uses branches to isolate changes from one another. You think of your source code as a

tree, with one main trunk. By default, everyone in git is working from the “trunk”, typically
named master or main. A branch lets you work on a separate version of the source code.

Your Work

Master

16

Branching Strategies

TAG: 21
How do you coordinate branches?

There are different approaches that have been taken, but some
common ideas:

N

TAG: 2.0

e
>

1. Create feature branches for development.

2. Merge changes from feature branches to trunk; the main trunk VERSION 2
should always build properly.

TAG: 1.0

1. Best practice: have tests on main that will automatically
execute when you merge.

>@

2. You should always be ready to release from trunk. T T

3. Release from main branch. \

MASTER RELEASE
BRANCHES

VERSION 1

17

Branching Models: Git Flow

xﬂ TAG: 21
/x TAG: 2.0

VERSION 2

In the Git flow model, you have two main branches:

>@

* Develop where all development takes place. Strictly
controlled.

* Main or trunk that is only used for release.

>® \0\0\

Developers create feature branches from the development

TAG: 1.0
branch and work on them. Once features are complete, they
create pull requests and other developers review their
changes. T 2
Eventually, a collection of features are approved and merged 2
back to the trunk (main) and released as a product version. T

VERSION 1
Characteristics “\.
 Long-lived feature branches, mean that merges are FEATURE RELEASE TAGHO
dlﬁlCUlt BRANCHES DEVELOP BRANCHES MASTER

(Main or Trunk)

* Allows careful control over integrating https://www.toptal.com/software/trunk-based-development-git-flow

Branching Models: Trunk-Based Dev

In the trunk-based development model, all developers ® me

work on a single branch with open access to it. Often
it’s simply the main or trunk branch. They commit code
to it and run it.

2

x TAG: 2.0

It’'s also common to create short-lived feature
branches. Once code on their branch compiles and
passes all tests, you merge straight to master.

VERSION 2

TAG: 1.0

Characteristics

 Feature branches are short-lived.

[

* Development is continuous so merges are more VERSION 1

frequent and easier to resolve.

MASTER RELEASE
. BRANCHES
(Main or

Trunk)

* Integration testing becomes more important!

https://www.toptal.com/software/trunk-based-development-git-flow

19

Best Practices: TDD & Refactoring

TDD has two characters: short and correctness. TDD development cycle is very short, which
make frequent commit possible. And on the other hand, the tests make sure that the code meet
the requirements. The test coverage is also guaranteed with TDD. With the help of TDD, team
members are able to commit to the trunk branch frequently and confidently.

CODE-DRIVEN TESTING REFACTORING
B
0"' Refactor
(Repwrite The test fails. [Ths|tsst su some code.
the test.
Check
Write only whether
The test enough code. all the tests
succeeds. % succeed.
Update the
Some tests failing tests.
fail.
Corra_cl
The test fails. X Th d q aity regressions.
W
focus _focus_
Completion of the contract Alignment of the design

as defined by the test with known needs

20

Advanced Git

.gitignore

e By default, git assumes that every file and directory in
your working directory is important.

* This is not true! You will have temp files and other files
you don’t want to save.

* To exclude files, add the filename to a file
named .gitignore in the top of your working directory.

* Files or file patterns listed in this file will be ignored by git
add, status etc.

“x.class
‘build/
iout/
Ewww/public

.gitignore for the course website

22

Handling merges

* We’ve been hand-waving one of the most challenging issues in Git: merges.
* So what happens when you and one of your teammates both make changes to the same file?
* When you commit, git merges your changes into the existing files.

* If it can do this without any conflicts (i.e. you were working on different files, or different
parts of the same files), is merges automatically. Most of the time this is what happens.

e Occasionally you get an error when git can’t resolve it.

! [rejected] main —> main (non-fast-forward)
error: failed to push some refs to 'https://github.com/supersites/git-er-
done.git'

hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.

hint: 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push ——help' for details.

https://www.raywenderlich.com/books/advanced-git/v2.0/chapters/2-merge-conflicts

23

How to merge

e Use “git pull” to pull the remote changes to your working area.

* You results will be a merge conflict. Git will tell you the source of the conflict.

From https://github.com/supersites/git-er-done
7588a5f..328aa%94 main -> origin/main
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.

 Edit the conflicting file and manually make the change that you want (i.e. decide which change to
keep!)

« Commit the changes and “git push” to the remote repo.

24

Editing conflicts

* When editing the conflicting files, Git will show you both sets of proposed changes.

* You are expected to manually edit the file into a “good” state.

<body>
<hl>magicSquarelS</h1l>
<<<<<<< HEAD
<section>
<input type="text" placeholder="Size" id="magic-square-size" />
Generate Magic Square
<pre id="magic-square-display">
[T1T11] 69670e7
<section>
<input type="text" placeholder="Size"/>
Generate Magic Square
<pre>

<section class="box">
<input type="text" class="flex-item" placeholder="Size"/>
Generate Magic Square
<pre class="flex-item" >
>>>>>>> yUI
</pre>
<div id="validation" class="flex-item" ></div>

25

Stashes

* Sometimes you have changes that you’re not ready to commit, but you want to look at a
different version.

* You can stash your changes temporarily and then restore them later.

Command Description Example

git stash Stash the current changes. $ git stash

git stash list [Show any stashes. $ git stash list

git stash pop Restore the stash to the working ~ |$ 9it stash pop
directory.

Git Clients

Numerous git clients exist that provide an easier alternative to the command-line.

LA o8 < (102 Commits
i master > =
BS Working Copy (1]
D History
(2] stashes 20:

11 Pull Requests
& Settings

~ B3 origin
¥ master

¥ ucd

Git slides complete. Renamed to match present
2022-01-29
Expanded desktop-application slides to include.

20:
Expanding git slides. Revised design review te...

B Jeft Avery 2022-01-27

& 0f36f1e6 Cleaned up readme, term notes to myself. Rem.
2022-01-26

Expanded reference setup to include IntelliJ wa..

2022-01-25

Added weekd-02 lecture slides.

20
9 Expanding desktop/JavaFX slides with more ex

2022

Revising week 5 infrastructure slides.

2022-01-23

Added weekd lectures.

B et Avery 2022
& fd094cc2 Finished adding design pattern examples. Lect.

2022-01-23

Revising week 4 slides.

2022-01-23

BN Jeff Avery
& 94bfa546 Added design pattern examples

ﬁ- a5418ed8_Fixing dependency inversion in slides.

Added fragments to An

R e e A hT B #v ¢ Q

30c2819d Tree

BpandAl sh
moditiea [ndexmd
moitied [ent2-introductio ndexmd
moditied [www/content2-introduction/2- undl_indexmd

content/2-introduction/2.groundassetsIBM_PC_AT pg

s/sequence-diagram.png,

https://www.git-tower.com

Status
1040 1221 - master

—Files - Submodules——— —
Ilectures/week@5-infrastructure v
I~ M 05-01-using-git.key

L———————1 of 2

Local Branches - Remotes - Tags
* master 10.0

Commits - Reflog
lea4ae48 Git slides complete. Ren
2accebd@ Expanded desktop-applica
6dadc58c Expanding git slides. Re
0f36fle6 Cleaned up readme, term
7d7cl5ad Expanded reference setup
ede2b54f Added week4-02 lecture s
aea4fac9 Expanding desktop/JavaFX
1 of 102

£

[}
1-5: jump to panel, H/L: scroll left/right, esc: cancel, pgup/pgdown: scroll, g: quit e Ask Question 0.31.4

1221 — lazygit — Ig — lazygit — 112x35
Unstaged Changes
diff —-git a/lectures/week05-infrastructure/05-01-using-git.key b/lectur
es/week@5-infrastructure/05-01-using-git.key
index 57f3495..9bbf34c 100755
Binary files a/lectures/week@5-infrastructure/05-01-using-git.key and b/
lectures/week@5-infrastructure/05-01-using-git.key differ

https://github.com/jesseduffield/lazygit

27

THIS 1S GIT. IT TRACKS COLLABORATVE. WORK
ON PROJTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

COOL. HOU DO WEVSE IT?

NO IDEA. JUST MEMORIZE. THESE SHELL
COMMANDS AND TYPE THEIM TO SYNC R
IF YOU GET ERRORS, SAVE. YOUR LIORK
ELSELHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\

ol

https://xkcd.com/1597/

28

