
Development Projects
CS 398: Application Development

IntelliJ IDEA; Build systems; Gradle

IntelliJ IDEA

2

3

We’re going to use IntelliJ, an IDE
which provides all development
functionality, and integrates with all of
our tools.

It can be downloaded from https://
www.jetbrains.com/idea/.

There is an Open Source Community
version, which is fine for this course. It
runs equally well on Windows/Linux/
Mac.

Setup your Development Environment

Creating a new project

From the splash screen, select “New Project”.

For this course, we recommend one of these options:

Console

• JVM - Console Application: Kotlin/JVM for an application
that requires the JVM to run.

• Multiplatform - Native Application: Kotlin/Native for a
standalone application under a specific platform.

Graphical Desktop

• Java FX - Java FX Desktop Application: imperative
application targeting the desktop JVM.

• Compose Multiplatform - Compose Desktop Application:
declarative application targeting the desktop JVM.

4

https://www.jetbrains.com/help/idea/get-started-with-kotlin.html

One of the strengths of this
ecosystem is that we can use it for

practically anything.

Choose the type of project

Creating a new project

Make sure to pick Gradle as your Build
System*.

• Your choice of Kotlin or Groovy
determined which programming
language will be used in the config files.

• Either is fine, though course examples
are mostly in Groovy (they were created
before Kotlin was widely supported).

Pick the correct version of Java JDK.

• IntelliJ will prompt you to install one if
you don’t have it installed already.

5

https://www.jetbrains.com/help/idea/get-started-with-kotlin.html

Specify Project Parameters

* we’ll talk more about Gradle and build systems soon.

6

Navigating IntelliJ

IntelliJ has a number of windows:

• Project: a list of all files (Cmd-1*)

• Structure: methods and
properties of the current open
class/source file (Cmd-7).

• Source: the current source files
(no hotkey).

• Git: Git status and log (Cmd-9) -
not shown.

• Gradle: tasks that are available
to run (no hotkey) - not shown.

Project

Structure

Source

* All keyboard shortcuts are customizable in Preferences. For example, the Gradle window doesn’t have a shortcut, but I usually assign it to Cmd-0.

Also, Windows/Linux users, lacking a Cmd key, should substitute Ctrl for Cmd.

Layout

7

Navigating IntelliJ

View - Tool Windows - Gradle

Expand Tasks

• Application

• Run — execute your program

• Build

• Build — rebuild it

• Clean — remove temp files

Running your project

After you build/run
once, the toolbar Run

and Debug items will be
active.

Build Systems

8

Build Systems

9

Let’s talk about compiling source code. Compilation takes source files from different locations,
compiles and links the output to create an executable.

C Compilation Process

10

However, this process often requires more than just compiling and linking code. Before you
compile anything, you might need to:

• Download/import new versions of libraries (dependencies).

• Copy resources (graphics files, sound clips, preference files) into a  
directory structure.

• Run a code analysis tool against your source code to check for  
suspicious code, formatting etc. or run a documentation tool to generate revised
documentation.

After compiling, you will want to:

• Test your code to make sure it works properly (e.g. multiple environments).

• Create an installer that you can use to deploy everything.  

Compiling refers to just compiling and linking. Building refers to this complete set of steps.

11

Task graph for a typical Java build

12

Performing these steps manually is error prone, and very time-consuming.

The ideal system would be automated and have the following properties:

1. The system would guarantee consistency in my builds.

2. It would be expressive enough to let me script any task that I need to perform.

3. It would integrate with other systems so that I could report results,  
or delegate responsibility (e.g. to remote test under a different OS).

4. Tasks could be initiated in response to external events.

• e.g. import the newest version of a library when it’s published.

• e.g. rebuild and test when someone commits to the Test branch.

5. Tasks could be scheduled.

• e.g. rebuild and test everything nightly at 2 AM, and email the manager with the git blame
results of the person that broke the build.

13

Systems that do these things are called build systems — software that is used to build other
software.

Build systems provide consistency in how software is built, and let you automate steps that are
required to build, test and deploy software.

They addresses issues like:

• How do I make sure that all of my steps (above) are being handled properly?

• How do I ensure that everyone is building software the same way i.e. compiling with the same
options?

• How do I ensure that tests are being run everytime someone builds?  

14

GNU Make
Make is widely used to script builds (by creating a makefile to describe how to build your project).

Using make, you can ensure that the same steps are taken every time your software is built. Here’s
a makefile for a Kotlin project, that can build and execute, or run a simple test.

 default:
 kotlinc Mean.kt -include-runtime -d out.jar

 run:
 java -jar out.jar

 test:
 java -jar out.jar 10 20

 clean:
 rm out.jar

15

Limitations with Make
However, make may not be the best choice for large, complex projects.

1. Build dependencies must be explicitly defined.

• Libraries must be present on the build machine, manually maintained, and explicitly
defined in your makefile.

2. Make is tied to the underlying environment of the build machine.

• It’s difficult to completely isolate make’s runtime behaviour from the underlying
environment. e.g. $LIB environment variable to track library location.

3. Performance is poor. Make doesn’t scale well to large projects.

4. The language itself isn’t very expressive, and has a number of inconsistencies.

5. It’s very difficult to fully automate and integrate with other systems.

16

Gradle
There are a number of build systems on the market that attempt to address these problems. e.g.
cmake, scons for C++, Ant or Maven for Java.

We’re going to use Gradle with Kotlin.

• It’s commonly used for large, complex Java and Kotlin projects.

• It handles all of our requirements, which is frankly, pretty impressive.

• It’s the official build tool for Android builds, so you will need it for Android applications.

• It’s declarative. You write Gradle build scripts in a DSL (Groovy or Kotlin), describing tasks to
perform. Gradle figures out how to perform them.

• It handles multi-step builds and complex dependencies automatically! i.e. it tracks your
libraries for you.

17

Gradle can be executed from the command-line. It supports a large range of commands.

$ gradle help: shows available commands

$ gradle init: create a new project and dir structure.

$ gradle tasks: shows available tasks from build.gradle.

$ gradle build: build project into build/

$ gradle run: run from build/

$ gradle help

 > Task :help

 Welcome to Gradle 7.2.

 To run a build, run gradle <task>

Gradle Commands

As you’ve seen, the Gradle plugin
for IntelliJ also makes these

commands available in the IDE.

18

Gradle Projects
A Gradle project is simply a set of source files, resources and configuration files in a specific structure.

We can use Gradle to create a starting directory structure and build configuration files.

 $ gradle init
 Select type of project to generate:
 1: basic
 2: application
 3: library
 4: Gradle plugin
 Enter selection (default: basic) [1..4] 2
 ...

The New Project wizard does the
exact same thing.

19

We can use Gradle to build and run a new project.

$ gradle build
BUILD SUCCESSFUL in 8s
8 actionable tasks: 8 executed

$ gradle run
> Task :run
Hello world.
BUILD SUCCESSFUL in 1s
2 actionable tasks: 1 executed, 1 up-to-date

Example: Hello Gradle

Runs the “build” task

Task output

Runs the “run” task

Program output

Gradle is very
“chatty”. This is

actually very useful
when debugging

build issues.

20

You can use gradle tasks to see all supported actions. The available tasks will vary based on the type of project you create.

$ gradle tasks

> Task :tasks

--
Tasks runnable from root project
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
classes - Assembles main classes.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the main classes.

. . . .

A “standard” Gradle project
has about 30 tasks. Many of

them are called infrequently, or
called by other tasks.

21

A standard Gradle project directory is structured like this:

Gradle project structure

22

The build.gradle file contains our project configuration.

plugins {
 // Kotlin JVM plugin to add support for Kotlin.
 id 'org.jetbrains.kotlin.jvm' version '1.3.72'

 // Application plugin for CLI applications.
 id 'application'
}

repositories {
 // Use jcenter for resolving dependencies.
 // You can declare any Maven repository here.
 jcenter()
}

dependencies {
 implementation platform('org.jetbrains.kotlin:kotlin-bom')
 implementation 'org.jetbrains.kotlin:kotlin-stdlib-jdk8'
 testImplementation 'org.jetbrains.kotlin:kotlin-test'
 testImplementation 'org.jetbrains.kotlin:kotlin-test-junit'
}
application {
 mainClassName = 'gradle.AppKt'
}

build.gradle file

Support for Kotlin language/builds

Adds ‘application’ tasks e.g. run

Libraries required for above

Settings for ‘application’ plugin e.g. main class

23

Benefits of Gradle
The build.gradle file contains information about your project, including the versions of all external
libraries that you require. In this project file, you define how your project should be built:

• You define the versions of each tool that Gradle will use e.g. compiler version. This ensures
that your toolchain is consistent.

• You define versions of each dependency e.g. library that your build requires. During the build,
Gradle downloads and caches those libraries. This ensures that your dependencies remain
consistent.

• Finally, Gradle has a wrapper around itself. You define the version of the build tools that you
want to use, and when you run Gradle commands using the wrapper script, it will download
and use the correct version of Gradle to actually create the builds. This ensures that your build
tools are consistent.

24

Example: Calc.kt
package calc

fun main(args: Array<String>) {
 try {
 println(Calc().calculate(args))
 } catch (e: Exception) {
 print("Usage: number [+|-|*|/] number")
 }
}

class Calc() {
 fun calculate(args:Array<String>):Any {

 if (args.size != 3) throw Exception("Invalid number of arguments")

 val op1:String = args.get(0)
 val operation:String = args.get(1)
 val op2:String = args.get(2)

 return(
 when(operation) {
 "+" -> op1.toInt() + op2.toInt()
 "-" -> op1.toInt() - op2.toInt()
 "*" -> op1.toInt() * op2.toInt()
 "/" -> op1.toInt() / op2.toInt()
 else -> "Unknown operator"
 }
)
 }
}

Main is not in a class

25

Example: Calc.kt build
Let’s migrate this code into a Gradle project.

1. Use Gradle to create the directory structure. Select “application” as the project type, and “Kotlin” as the language.

$ gradle init

Select type of project to generate:
 1: basic
 2: application

2. Copy the calc.kt file into src/main, and modify the build.gradle file to point to that source file.

application {
 // Main class for the application.
 mainClassName = 'calc.CalcKt'
}

3. Use gradle to make sure that it builds.

$ gradle build

BUILD SUCCESSFUL in 975ms

Kotlin generates a
wrapper class for our

main method, since the
JVM expects a class.

…

26

4. If you use gradle run, you will see some unhelpful output:

$ gradle run
> Task :run
Usage: number [+|-|*|/] number

We need to pass arguments to the executable, which we can do with --args.

$ gradle run --args="2 + 3"
> Task :run
5

Organization

27

Structuring source code
Gradle provides some guidelines on how you should structure your source code. i.e. what sub-
directories to create, how to organize your source files.

https://docs.gradle.org/current/userguide/organizing_gradle_projects.html

https://docs.gradle.org/current/userguide/directory_layout.html

28

1. Separate source files by type. The default Gradle
structure splits up source files from configuration
and resource files.

2. Use standard conventions as much as possible.
Gradle and its plugins create default directories
when you create a new project.

Gradle splits up source files by language.

You can further divide source code up by
package, where a package represents a
logical grouping of your files.

/persistance (/models)

/business (/controllers)

/presentation (/views)

e.g. you are using a layered architecture,
so you can further subdivide your source
code by layer.

This also aids in testing, since you can
write tests that target a specific layer (and
focus on testing its interface).

29

Structuring source code

Packages further group presentation, business and persistence layers.

Version Control
• Make sure to store your project in Git so that everyone can access it.

• For now, commit to the Main branch.

• See the Git slides and videos for more information!

30

Tip:

Add a .gitignore to the top-level of your project, and in it, specify the build/ directory and any other
temporary files or directories that you don’t want saved.

