CS 398: Application Development
Week 05 Lecture: Infrastructure

Gradle and build systems

This Week

Goal: Get everything setup for Sprint 1 kickoff (next Mon Feb 7th in-class)

Lectures This Week

* Mon: Git, Branching, Collaboration

* Wed: Gradle, Build Systems

* Fri: Building desktop applications OR Building mobile applications <— NOT on Quiz

Lectures Next Week

 Unit testing, Refactoring

Review

Gradle

There are a number of build systems on the market that attempt to address these problems. e.g.
cmake, scons for C++, Ant or Maven for Java.

We’re going to use Gradle with Kotlin.

* It’s commonly used for large, complex Java and Kotlin projects.

* It handles all of our requirements, which is frankly, pretty impressive.

* It’s the official build tool for Android builds, so you will need it for Android applications.

* It’s declarative. You write Gradle build scripts in a DSL (Groovy or Kotlin), describing tasks to
perform. Gradle figures out how to perform them.

* It handles multi-step builds and complex dependencies automatically! i.e. it tracks your libraries
for you.

You can use gradle tasks to see all supported actions.

$ gradle tasks

> Task :tasks

The available tasks will vary based on the type of project you create.
A “standard” Gradle project
has about 30 tasks. Many of

them are called infrequently, or

called by other tasks.

Tasks runnable from root project

XY untitled - Note.kt [untitied.main]
untitled | src ' main | kotlin) business = (& Note L A untitled [run] + | > # G G ~ Q %
. . Project v D= & - package business 3 A v Gradle O —
Appllcat ion tas kS ~ I untitled ~/Downloads/untitled ' s + PO R)
> ¥ gradie 3 class Note(val heading: String, val text: String) { = - = s
~ W src ® // the magic happens here] ' # untitled
1 J . : ~ g main > } v fo:asks.)
run — Runs this project as a JVM application « B kot ¥ applcation
< BN business rn
~ 1% build
& Note ?Y assembl
[persistance . semble
% build

Build tasks

[0 presentation % buildDependents

ik Main.ke % buildKotlinToolingMetadata
——————————— | F‘.‘Ele"::"”"ces j" buildNeeded
assemble — Assembles the outputs of this project. 4 sl grade e
gradle.properties & iar
build — Assembles and tests this project. E— Tz e- restClasses
) 1% build setup

buildDependents - Assembles and tests this project ** =« ¥
buildNeeded — Assembles and tests this project and 7 comsmorousiing suing

classes — Assembles main classes.
clean - Deletes the build directory.

1'% distribution
v g

© ™ Note 1'% documentation
% help
% other
1% verification

V.= heading: String

P2EVARVERVERVIRN

V s text: String

> [Dependencies
> % Run Configurations

jar — Assembles a jar archive containing the main «

IC)l 1 occurrence changed 4:30 LF UTF-8 4spaces ‘i

»
D

A standard Gradle project directory is structured like this:

| build.aradle } Project configuration file, with task details.

—— qradle —

wrapper

—— qgradle-wrapper.ijar

—— gradle-wrapper.properties

— dradlew

— qradlew. bat —

—— settinas.aradle

—— main

— kotlin

L— demo

— resources . Source code, unit tests and resources

—— test

— kotlin
L— demo

— resources

Gradle downloads and installs itself to ensure
— that you always use the same version of your
build tools.

Tells Gradle what projects to include.

J—

Gradle project structure

Structuring source code

You can further divide source code up by
package, where a package represents a
logical grouping of your files.

/persistance (/models)
/business (/controllers)
/presentation (/views)

e.g. you are using a layered architecture,
so you can further subdivide your source
code by layer.

This also aids in testing, since you can
write tests that target a specific layer (and
focus on testing its interface).

® untitled - Note.kt [untitled.main]
itles X A untitled [run] v > # G @ ~ Q @
rojec package business 3 A v Gradle e -
v W unti S + o T T o~
> ra class Note(val heading: String, val text: String) { =~ -
I v untitled
v rc i Task
v asks
e main } o ¢ Jicat
app!
v I kotli °
run
ot business
v 1% build
& Not
sssss ble
persistance
build
presentat
buildDependents
Main.kt
buildKotlinToolingMetadata
rces
buildNeeded
> g test
classes
¥ build.gradle
clea
¥ gradle.properties)
jar
Structure I T o - testClasses
) > i
1 p Y Y % build setup
> U distributi
v & Note
> 1 documentation
m . .
constructor Note(String, String) > W3 help
v .
heading: String > WG other
Vi text: Stri
ext: String > g verificat
> Fili Depend:
> % Run Configurat
I 1o nce changed 430 LF UTF-8 4spaces m @ Q

Packages further group presentation, business and persistence layers.

Activities

Activities This Week

Setup GitLab
 All requirements logged in Git and unassigned.
* Milestones (sprints) setup.

* Infrastructure tasks moved to Sprint 0, closed as appropriate.

Source code

» Starting project committed to Git repo.

» Git works across all machines. Everyone has a git client, and knows how to git pull/push.
* Intellid is setup for everyone, and the starting project builds.

Technical Investigation
» Choose toolkits; investigate libraries

* Think about data format! How will you store, represent this data?

9

