
Week 05 Lecture: Infrastructure
CS 398: Application Development

Gradle and build systems

This Week
Goal: Get everything setup for Sprint 1 kickoff (next Mon Feb 7th in-class)

Lectures This Week
• Mon: Git, Branching, Collaboration

• Wed: Gradle, Build Systems

• Fri: Building desktop applications OR Building mobile applications <— NOT on Quiz

Lectures Next Week
• Unit testing, Refactoring

2

Review

3

4

Gradle
There are a number of build systems on the market that attempt to address these problems. e.g.
cmake, scons for C++, Ant or Maven for Java.

We’re going to use Gradle with Kotlin.

• It’s commonly used for large, complex Java and Kotlin projects.

• It handles all of our requirements, which is frankly, pretty impressive.

• It’s the official build tool for Android builds, so you will need it for Android applications.

• It’s declarative. You write Gradle build scripts in a DSL (Groovy or Kotlin), describing tasks to
perform. Gradle figures out how to perform them.

• It handles multi-step builds and complex dependencies automatically! i.e. it tracks your libraries
for you.

5

You can use gradle tasks to see all supported actions. The available tasks will vary based on the type of project you create.

$ gradle tasks

> Task :tasks

--
Tasks runnable from root project
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
classes - Assembles main classes.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the main classes.

. . . .

A “standard” Gradle project
has about 30 tasks. Many of

them are called infrequently, or
called by other tasks.

6

A standard Gradle project directory is structured like this:

Gradle project structure

You can further divide source code up by
package, where a package represents a
logical grouping of your files.

/persistance (/models)

/business (/controllers)

/presentation (/views)

e.g. you are using a layered architecture,
so you can further subdivide your source
code by layer.

This also aids in testing, since you can
write tests that target a specific layer (and
focus on testing its interface).

7

Structuring source code

Packages further group presentation, business and persistence layers.

Activities

8

9

Activities This Week
Setup GitLab
• All requirements logged in Git and unassigned.

• Milestones (sprints) setup.

• Infrastructure tasks moved to Sprint 0, closed as appropriate.

Source code

• Starting project committed to Git repo.

• Git works across all machines. Everyone has a git client, and knows how to git pull/push.

• IntelliJ is setup for everyone, and the starting project builds.

Technical Investigation

• Choose toolkits; investigate libraries

• Think about data format! How will you store, represent this data?

