CS 398: Application Development

Building Desktop Applications

Features; Graphical toolkits; JavaFX

Graphical User Interfaces

Graphical applications arose in the early 80s as we moved from text-based terminals to
more capable graphical systems.

Graphical User Interfaces (GUIs) were thought to be more “user-friendly” to new users.
Different vendors adopted very similar conventions, resulting in very similar interfaces.

SN
Back Feryen

@ Stop Rehesh Home &

Address [CAWINDOWS\SYSTEM\BLANK HTM

LROSBEEGTOT AR

Bstart [Minesweeper | (8] MictosoftIntemet Explorer .| (-9CD Player T
Windows 95 Mac OSX Leopard

Vendors tended to design similar looking systems, with only minor functional and aesthetic differences. This is a “standard” desktop.

Features

Windows

Multiple application windows. Most applications will often present their interface
within a single, interactive window, but it can sometimes be useful to have multiple
simultaneous windows controlled by a single application..

Support for full-screen or windowed interaction: although graphical applications
tend to run windowed, they should normally be usable full-screen as well. The
window contents should scale or reposition themselves as the window size changes.

Window decorations: Each window should have a titlebar, minimize/maximize/
restore buttons (that work as expected).

Windows may or may not be resizable: if they are resizable, the contents should
scale or adjust their layout based on window size (for this reason, it may make sense
to either contrain window dimensions when resizing, or make some windows fixed
size). Convention allows the main window to be resized, and option dialogs (or similar
non-essential windows) to be fixed-size.

Interactive graphical
elements: window
contents are a
combination of txt,
images, and interactive
elements.

Windows are dynamic,
and rearrange contents
based on window size

and dimensions.

Primary interaction is
point-and-click with a
mouse.

Interaction

eoe [+ <

Uuo® 0 6

student.cs.uwaterloo.ca/~cs398/10-building-applications/3 ¢ [ﬁ +

Advising v Austin v Cool Apps v CS 398 v DevDocs GitLab Guitar v Home Kotlin v Personal v Programming v UW v

g Desktop Applications :: CS 398

Q Search...

Syllabus
Introduction
Software Process
Planning
Requirements
Analysis & Design
Implementation
Testing & Evaluation
Kotlin Primer
Building Applications
Console Applications

Desktop Applications

(Kotlin Language
Home > Building Applications > Desktop Applicati...

Multiple application windows should be supported. Most applications will
often present their interface within a single, interactive window, but it can
sometimes be useful to have multiple simultaneous windows controlled by a
single application’.

Support for full-screen or windowed interaction: although graphical
applications tend to run windowed, they should normally be usable full-screen
as well. The window contents should scale or reposition themselves as the
window size changes.

Window decorations: Each window should have a titlebar,
minimize/maximize/restore buttons (that work as expected).

Windows may or may not be resizable: if they are resizable, the contents
should scale or adjust their layout based on window size (for this reason, it may
make sense to either contrain window dimensions when resizing, or make some
windows fixed size). Convention allows the main window to be resized, and
option dialogs (or similar non-essential windows) to be fixed-size.

Interactive graphical elements: window contents could be any combination
of graphics, animations, multimedia, or text that is desired for the target
application. These contents should be dynamic (i.e. have the ability to change in
response to system state) and should support a range of interactions - clicking,
double-clicking, dragging - provided by both mouse and keyboard.

Qtandard maniithare: avarv annlicatinn chanild have tha fallawing maniie Gaith

[u]u)
oo

Interaction

Standard menu bars: every application should have the following menus (with shortcuts).
Although some applications choose to eliminate menus (or replace with other controls), most of
the time you should include them. Exact contents may vary, but users expect at-least this
functionality:

o File: New, Open, Close, Print, Quit.
o Edit: Cut, Copy, Paste.

o Window: Minimize, Maximize.

O Help: About.

Keyboard shortcuts: you should strive to have keyboard shortcuts for common functionality. All
standard shortcuts should be supported.. e.g.

o Ctrl-N for File-New, Ctrl-O for File-Open, Ctrl-Q for Quit.
o Ctrl-X for Cut, Ctrl-C for Copy, Ctrl-V for Paste.
o F1 for Help.

A

Toolkits

is a Ul framework which provides most this functionality. This

includes support for:

Creating and managing application windows, with standard window functionality
e.g. overlapping windows, depth, min/max buttons, resizing.

Reusable components called that can be combined in a window to build
typical applications. e.g. buttons, lists, toolbars, images, text views.

Dynamic layout that adapts the interface to change in window size or dimensions.

Support for an event-driven architecture. i.e. support for standard and custom
events. Includes event generation and propagation.

e e.g. Swing, JavaFX (Java or Kotlin Desktop), Compose (Kotlin Android/Desktop)

Architecture

Event-Driven Architecture

User interfaces are designed around the idea of using Oor messages as a
mechanism for components to indicate state changes to other interested

entities.

This type of system, designed around the production, transmission and
consumption of events between loosely-coupled components, is called an

EVENT CONSUMER(S)

EVENT BROKER

SUBSCRIBE TOPIC 01

o~
o)
o+’

EVENT PRODUCER

TOPIC 01 EVENT

EVENT
SUBSCRIBE TOPIC 02 o
TOPIC 02
EVENT
EVENT

TOPIC... SUBSCRIBE TOPIC...

(

o~
o</

(

o~
o
o<’

EVENT

(

https://www.tibco.com/reference-center/what-is-event-driven-architecture

How does event-driven architecture work?

An event producer detects or senses the conditions that indicate that
something has happened, and creates an event.

The event is transmitted from the event producer to one for more event
consumers through event channels, where an event processing platform
processes the event asynchronously. Event consumers choose how to act.

EventEmitters Events m Event Handlers
O] ===—{ }

NS

10

MVC Pattern

We often choose to model these types of systems using the MVC pattern, which
is a specific instance of the observer pattern.

Subject
Vector<Observer> observers |observers * Observer
attach(Observer 0)

detach(Observer 0) H ate
notim z
notify():

for all o in observers {
o->update()
}

ConcreteSubject ConcreteObserver
subjectState subject ConcreteSubject subject
getState() observerState
setState‘ i ugdate‘ I

MVC Pattern

MVC divides an application into three
distinct parts:

 Model: the core component of the
application that handles state.

* View: a representation of the
application state, often as a user-
interface (“presentation”)

e Controller: a component that
accepts input, interprets user
actions and converts to commands
for the model or view (“business
logic”).

passes user
input

—

fetches

>

modifies

updates

12

class Main {
val model = Model()
val controller = Controller(model)
val view = View(controller, model)
model.addView(model)

class Model {

val views = 1istOf()

fun addView(view: IView) {
views.add(view)

¥

fun update() {
for (view : views) {

view.update()

by

class Controller(val model: Model) {
fun handle(event: Event) {
// pass event data to model

¥

interface IView {
fun update()
s

class View(

val controller: Controller, val model: Model): IView

{

override fun update() {
// fetch data from model

public / desktop / MVC

13

JavaFX

JavaFX

JavaFX is a popular Java and Kotlin desktop toolkit.

It was developed as a replacement to the aging Swing toolkit in Java, and
has advanced features (e.g. 2D and 3D graphics, video playback, charts).

It’s cross-platform on Windows, Mac, Linux, providing a native look and
feel. It supports hardware acceleration, so it performs well!

It consists of a small set of Java libraries that can be freely distributed.
It’s easy to import into a Gradle project.

15

Create a JavaFX project

File, New Project
Choose JavaFX.
Options:

» Kotlin, Gradle, JUnit.

* (Optional) Other libraries.

Pick Gradle! It will

automatically manage the
JavaFX libraries.

= Java

m

-3

% Spring Initializr

\J

G

= Multi-module Project

Maven
Gradle
Android

Ktor
Groovy
Kotlin

Web

=) JavaScript

= Empty Project

?

Cancel

Name:

Location:

Language:

Build system:

Test framework:

Group:

Artifact:

Project SDK:

New Project

demo

~/Downloads/demo

Java Kotlin Groovy

Maven Gradle

JUnit TestNG

com.example

demo

% 16 Oracle OpenJDK version 16.0.1 v

revious

16

Hello World!

[XON) demo - HelloApplication.kt [demo.main]
demo ' src ' main & kotlin ' com 5 example = demo HelloApplication.kt P34 ’\ Add Configuration...
Project w DT = & — package com.example.demo
Vv [ig demo ~/Downloads/demo
> gradle import ...
v src
v g main class HelloApplication : Application() {
> [java of overrid ® © @ Hello!
> kotlin val ion::class.java.getResource(name: "hello-view.fxml"))
> resources val h: 320.0, height: 240.0)
@ build.gradle stal
- " _ stal o
Structure s = & — Welcome to JavaFX Application!
- sta(
Buleav ¥ }
v HelloApplication.kt 3
v & HelloApplication
m start(Stage): Unit > fun main()
f main(): Unit Applicai . _wa)
1
Build: Sync
a demo: finished At 2022-01-25, 10:57 a.m. 13 sec, 942 ms ~ Starting Gradle Daemon...
A
Gradle Daemon started in 909 ms
» > Configure project :
® Project : => 'com.example.demo' Java module

> Task :prepareKotlinBuildScriptModel UP-TO-DATE

BUILD SUCCESSFUL in 11s

ICl Gradle sync finished in 13 s 843 ms (6 minutes ago)

20:2 LF

UTF-8

4 spaces ‘i

Ie

17

Application Lifecycle

JavaFX applications extend the Application class. The JavaFX runtime does the
following when an application is launched:

l.

2
3.
4

Creates an instance of the specified Application class.
Calls the instance’s init () method
Calls its start () method
Most time is

Waits for the application to finish, when either (a) the application calls o here
Platform.exit() or (b) the last application window has been closed. >

things to
happen

Calls its stop() method.

The start() method is abstract and MUST be overridden. The init() and stop()
methods are optional, but MAY be overridden.

18

Application Flow

import javafx.application.Application Methods are invoked in this
import javafx.stage.Stage order.
: : Note that all are abstract base
class Stages : Application() { class methods and have default
override fun init() { implementations.
super.init()
println("init")

“
[]

Step 0: main() — optional

override fun start(stage: Stage) { @
pl‘intln("start") required

Step 1:init() — optional

Step 2: start() — required

“«
[)

Step 3: stop() — optional

override fun stop() {
super.stop()
println("stop")

Hello World - Code

import javafx.application.Application See public repo:
import javafx.scene.Scene public / desktop / JavaFX / HelloFX
import javafx.scene.control.Label

import javafx.scene.layout.StackPane

import javafx.stage.Stage

class HelloFX: Application() {
override fun start(stage: Stage?) {
val pane = StackPane(Label("Hello Java FX")) This is a fully-
val scene = Scene(pane, 150.0, 75.0) functioning app.

stage?.setScene(scene)
stage?.setTitle("Hello FX")
stage?.show()

20

Windows Handling

In JavaFX, each application can own one or more windows. Within each
window, we use abstraction called a scene graph, to represents graphical
content as tree, where higher level elements manage their children.

Home Insert Draw Design Transitions

o b | g B
@ Reset
m Paste New

Slide E Section v

[o o b o] o] s

Home

L Copy-Paste Tools

[me]
l leftdeg | | rightieg | t Paste
I | Cut

l Iefl-calfl | nghmlfl

Copy

|Ieﬂ-foot|-|ﬂght—foo||

—— Slide Tools

A scene graph is a hierarchy of components that describes graphical content.

21

Scene Graphs in JavaFX

 The Stage class represents the main window

 The Scene class contains a scene graph: a non-cyclical tree, with a single
root, representing the contents of the scene.

* Nodes represent graphical elements in the scene graph.

Decoration
- O X
| Stage (Title bar and border)

Scene Scene Graph Content Area

Root Node

//\

Branch Node Leaf Node

O~

Leaf Node Leaf Node

22

Stage

The “Stage*” is the top-level container or application window. You can have
multiple stages, representing multiple windows.

javafx.stage.Window
javafx.stage.Stage

A Stage instance is automatically created by the runtime, and passed into the
start() method.

Stage methods operate at the window level:
e setMinWidth(), setMaxWidth()

- setResizable()

« setTitle()

« setScene()

« show()

Scene

The “Scene” is a container for the content in a scene-graph.
javafx.scene.Scene

You must manually construct the scene, and set it up:

» Create a scene graph and specify the root-node.

* Add the scene to a stage and make the stage visible.

Scene methods manipulate the scene graph, or attempt to set properties for the entire
graph:

« setRoot (Node)
« setFill(Paint)
« getX(), getY()

24

Nodes

“Node” is the base class for all elements of a Scene graph.
There are two types of nodes:

Branch nodes: These are nodes that can hold other nodes in the tree. Examples of
subclasses include Group, Region.

javafx.scene.Node
javafx.scene.Parent

Leaf nodes: These are low-level nodes that cannot contain other nodes. Examples
include Circle, Rectangle, Button and Label.

javafx.scene.Node
javafx.scene.Parent
javafx.scene. layout.Region
javafx.scene.control.Control

25

Building a User Interface

class App: Application() {
override fun start(stage:Stage?) {
val image = ImageView(Image("java.png", 200.0, 200.0, true, true))
val label = Label("Java ${System.getProperty("java.version")} & "
+ "JavaFX ${System.getProperty("javafx.version")}")
label.font = Font.font("Helvetica")

o
val box = VBox(image, label)
VBox.setMargin(label, Insets(10.0)) (iL
el
S—
val scene = Scene(box, 200.0, 250.0) < _
stage?.setResizable(false) JaVEa
stage?.setScene(scene)
stage?.show() Java 16.0.1 & JavaFX 11.0.2

public / desktop / JavaFX / JavaVersion

26

Layout

Layout is how items are arranged on the screen.

Layout classes are branch nodes that have built-in layout behaviour. Your choice
of parent class to hold nodes determines how its children will be laid out.

Layout Class Layout Behaviour

HBox Layout children horizontally in-order
VBox Layout children vertically in-order
FlowPane Layout left-right, top-bottom in-order
BorderPane Layout across sides, centre in-order
GridPane 2D grid, with cells the same size

Common JavaFX Layout Classes

class Main
override fun start(stage: Stage) {

Layout Example

Application() {

val toolbar = ToolBar()

val button = Button("Button")
button.font = Font("Helvetica", 11.0)
toolbar.items.add(button)

val text = Text("Lorem ipsum dolor ..”)

text.font = Font("Helvetica", 12.0)
text.wrappingWidth = 350.0

val scroll = ScrollPane()
scroll.content = text

stage.scene = Scene(VBox(toolbar, scroll))
stage.show()

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum. Sed ut
perspiciatis unde omnis iste natus error sit voluptatem
accusantium doloremque laudantium, totam rem aperiam, eaque
ipsa quae ab illo inventore veritatis et quasi architecto beatae
vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia
voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur
magni dolores eos qui ratione voluptatem sequi nesciunt. Neque
porro quisquam est, qui dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit, sed quia non numquam eius modi
tempora incidunt ut labore et dolore magnam aliquam quaerat
voluptatem. Ut enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid
ex ea commodi consequatur? Quis autem vel eum iure
reprehenderit qui in ea voluptate velit esse quam nihil molestiae
consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

public / desktop / JavaFX / Layout

28

What can we add to a Scene?

Node is the base class for all Leaf nodes in the Scene Graph.

This includes: Camera, Canvas, ImageView, LightBase, MediaView, Parent, Shape,
Shape3D, SubScene, SwingNode

Graphics Primitives (Shape classes for drawing)

» Arc, Circle, CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve,
Rectangle, SVGPath, Text

Widgets (interactive components)

» Accordion, ButtonBar, ChoiceBox, ComboBoxBase, HTMLEditor, Labeled, ListView,
MenuBar, Pagination, Progressindicator, ScrollBar, ScrollPane, Separator, Slider,
Spinner, SplitPane, TableView, TabPane, TextinputControl, ToolBar, TreeTableView,

TreeView

29

Reusable Components (aka Controls, Widgets)

',
« JavaFX includes a large collection of —

String

components that you can use to create
your application. ——

Boxes Color Button Graphic Button

Row 1l Row 2 L
Horse
Horizontal List Vie

Toggle Button

Irs
acoo
sabella

Ethan

Progress Indicator Table

Simple S
Label

Simple Label

* All behave the same:
Instantiate them.

« Set properties that describe how they =
should behave

e Add them to a layout. <

Graphic
Label

https://openjfx.io/javadoc/17/javafx.controls/javafx/scene/control/package-summary.html

30

java.lang.Object
javafx.scene.Node
javafx.scene.Parent
javafx.scene.layout.Region
javafx.scene.control.Control

Control

javafx.scene.control 4

31

Event Handlers

JavaFX is designed to support event-driven architecture.

To make a user interface interactive, you write event consumers that can
respond to user -generated events. e.g. code to describe what happens when
a button is clicked.

--

‘What’s an event? An event is any significant occurrence or change in state
gfor system hardware or software.

‘The source of an event can be from internal or external inputs. Events can :
:generate from a user, like a mouse click or keystroke, an external source, such
:as a sensor output, or come from the system, like loading a program.

:How does event-driven architecture work? Events are routed from event
:producers, to event consumers that can choose to act on them.

32

Adding listeners (aka event handlers)

A listener is a form of
event handler - a
consumer that registers to
listen for specific events.

We can attach listeners to
any interactive
component, which will be
executed on events that
are produced by that
component.

// simple handler to respond to user actions
button.setOnMouseClicked {
resetToDefaultPath()

// respond to panel resize
val widthProperty = pane.widthProperty();
widthProperty.addListener(ChangelListener<Number> ()
{
@override fun changed() {
// do something

33

Events Example

class Main : Application() {
private val width = 250.0
private val height = 325.0

override fun start(stage: Stage) {
// analog time
val clock = ClockFace(0.0, 0.0, 100.0)
val clockPane = StackPane(clock.build())
clockPane.setPrefSize(width, height - 75)

// digital time

val time = Label()

time.font = Font("Helvetica", 28.0)
val timePane = StackPane(time)
timePane.setPrefSize(width, 75.0)

// timer fires every 1/60 seconds, and fetches time
val dateFormat = SimpleDateFormat("hh:mm:ss")
val timer = object : AnimationTimer() {
override fun handle(now: Long) {
time.text = dateFormat.format(Calendar.getInstance().time)
clock.setTime(
Calendar.getInstance() [Calendar.HOUR_OF_DAY],
Calendar.getInstance() [Calendar.MINUTE],
Calendar.getInstance() [Calendar.SECOND]

b

timer.start()

@ Clock

12:33:36

public / desktop / JavaFX / Advanced_Clock

34

Other Samples

class Main : Application() { public / desktop / JavaFX / Calculator

class Expr(var numl: Int, var op: OP = OP.NONE, var num2: Int) {
enum class OP { ADD, SUB, MUL, DIV, NONE }
fun clear() = run { numl = @ ; op = OP.NONE ; num2 = 0 }
fun set(operation: OP) = run { op = operation }
fun set(n: Int) = if (op == OP.NONE) numl = (numl *x 10) + n else num2 = (num2 * 10) + n

override fun start(stage: Stage?) {
// text output field
val output = TextField("")
output.font = Font("Helvetica", 21.0)
output.isVisible = true
output.isDisable = true
output.alignment = Pos.BASELINE_RIGHT

Start method for

main JFX class

// numbers

val button@
val buttonl
val button2
val button3
val button4

CalcButton("0", { expr.set(0); output.text
CalcButton("1", { expr.set(1); output.text
CalcButton("2", { expr.set(2); output.text
CalcButton("3", { expr.set(3); output.text
CalcButton("4", { expr.set(4); output.text

output.text.plus("0") })
output.text.plus("1") })
output.text.plus("2") })
("3") })
("a") 3})

output.text.plus
output.text.plus

