
Building Desktop Applications
CS 398: Application Development

Features; Graphical toolkits; JavaFX

2

Graphical applications arose in the early 80s as we moved from text-based terminals to
more capable graphical systems.

Graphical User Interfaces (GUIs) were thought to be more “user-friendly” to new users.

Different vendors adopted very similar conventions, resulting in very similar interfaces.

Graphical User Interfaces

Mac OSX LeopardWindows 95

Vendors tended to design similar looking systems, with only minor functional and aesthetic differences. This is a “standard” desktop.

Linux

Features

3

Windows
• Multiple application windows. Most applications will often present their interface

within a single, interactive window, but it can sometimes be useful to have multiple
simultaneous windows controlled by a single application1.

• Support for full-screen or windowed interaction: although graphical applications
tend to run windowed, they should normally be usable full-screen as well. The
window contents should scale or reposition themselves as the window size changes.

• Window decorations: Each window should have a titlebar, minimize/maximize/
restore buttons (that work as expected).

• Windows may or may not be resizable: if they are resizable, the contents should
scale or adjust their layout based on window size (for this reason, it may make sense
to either contrain window dimensions when resizing, or make some windows fixed
size). Convention allows the main window to be resized, and option dialogs (or similar
non-essential windows) to be fixed-size.

4

Interaction
Interactive graphical
elements: window
contents are a
combination of txt,
images, and interactive
elements.

Windows are dynamic,
and rearrange contents
based on window size
and dimensions.

Primary interaction is
point-and-click with a
mouse.

5

Interaction
Standard menu bars: every application should have the following menus (with shortcuts).
Although some applications choose to eliminate menus (or replace with other controls), most of
the time you should include them. Exact contents may vary, but users expect at-least this
functionality:

◦ File: New, Open, Close, Print, Quit.

◦ Edit: Cut, Copy, Paste.

◦ Window: Minimize, Maximize.

◦ Help: About.

Keyboard shortcuts: you should strive to have keyboard shortcuts for common functionality. All
standard shortcuts should be supported2. e.g.

◦ Ctrl-N for File-New, Ctrl-O for File-Open, Ctrl-Q for Quit.

◦ Ctrl-X for Cut, Ctrl-C for Copy, Ctrl-V for Paste.

◦ F1 for Help.

6

Toolkits
A widget or GUI toolkit is a UI framework which provides most this functionality. This
includes support for:

• Creating and managing application windows, with standard window functionality

e.g. overlapping windows, depth, min/max buttons, resizing.

• Reusable components called widgets that can be combined in a window to build

typical applications. e.g. buttons, lists, toolbars, images, text views.

• Dynamic layout that adapts the interface to change in window size or dimensions.

• Support for an event-driven architecture3 i.e. support for standard and custom

events. Includes event generation and propagation.

• e.g. Swing, JavaFX (Java or Kotlin Desktop), Compose (Kotlin Android/Desktop)

7

Architecture

8

Event-Driven Architecture
User interfaces are designed around the idea of using events or messages as a
mechanism for components to indicate state changes to other interested
entities.

This type of system, designed around the production, transmission and
consumption of events between loosely-coupled components, is called an
Event-Driven Architecture.

9

https://www.tibco.com/reference-center/what-is-event-driven-architecture

An event producer detects or senses the conditions that indicate that
something has happened, and creates an event.

The event is transmitted from the event producer to one for more event
consumers through event channels, where an event processing platform
processes the event asynchronously. Event consumers choose how to act.

10

How does event-driven architecture work?

MVC Pattern
We often choose to model these types of systems using the MVC pattern, which
is a specific instance of the observer pattern.

11

MVC Pattern
MVC divides an application into three
distinct parts:

• Model: the core component of the

application that handles state.

• View: a representation of the

application state, often as a user-
interface (“presentation”)

• Controller: a component that
accepts input, interprets user
actions and converts to commands
for the model or view (“business
logic”).

12

class Main {

 val model = Model()

 val controller = Controller(model)

 val view = View(controller, model)

 model.addView(model)

}

13

interface IView {

 fun update()

}

class View(

val controller: Controller, val model: Model): IView
{

 override fun update() {

 // fetch data from model

 }

}

class Model {

 val views = listOf()

 fun addView(view: IView) {

 views.add(view)

 }

 fun update() {

 for (view : views) {

 view.update()

 }

 }

}

class Controller(val model: Model) {

 fun handle(event: Event) {

 // pass event data to model

 }

}

public / desktop / MVC

JavaFX

14

15

JavaFX
JavaFX is a popular Java and Kotlin desktop toolkit.

• It was developed as a replacement to the aging Swing toolkit in Java, and
has advanced features (e.g. 2D and 3D graphics, video playback, charts).

• It’s cross-platform on Windows, Mac, Linux, providing a native look and
feel. It supports hardware acceleration, so it performs well!

• It consists of a small set of Java libraries that can be freely distributed.

• It’s easy to import into a Gradle project.

Create a JavaFX project

File, New Project

Choose JavaFX.

Options:

• Kotlin, Gradle, JUnit.

• (Optional) Other libraries.

16

Pick Gradle! It will
automatically manage the

JavaFX libraries.

Hello World!

17

JavaFX applications extend the Application class. The JavaFX runtime does the
following when an application is launched:

1. Creates an instance of the specified Application class.

2. Calls the instance’s init() method

3. Calls its start() method

4. Waits for the application to finish, when either (a) the application calls

Platform.exit() or (b) the last application window has been closed.

5. Calls its stop() method.  

The start() method is abstract and MUST be overridden. The init() and stop()
methods are optional, but MAY be overridden.

18

Application Lifecycle

Most time is
spent here,
waiting for
things to
happen

Application Flow
import javafx.application.Application 
import javafx.stage.Stage 
 
class Stages : Application() {

 override fun init() { 
 super.init() 
 println("init") 
 } 
 
 override fun start(stage: Stage) { 
 println("start") 
 } 
 
 override fun stop() { 
 super.stop() 
 println("stop") 
 } 
}

19

Methods are invoked in this
order.

Note that all are abstract base
class methods and have default
implementations.

• Step 0: main() — optional

• Step 1: init() — optional

• Step 2: start() — required

• Step 3: stop() — optional

required

Hello World - Code
import javafx.application.Application

import javafx.scene.Scene

import javafx.scene.control.Label

import javafx.scene.layout.StackPane

import javafx.stage.Stage

class HelloFX: Application() {

 override fun start(stage: Stage?) {

 val pane = StackPane(Label("Hello Java FX"))

 val scene = Scene(pane, 150.0, 75.0)

 stage?.setScene(scene)

 stage?.setTitle("Hello FX")

 stage?.show()

 }

}

20

This is a fully-
functioning app.

See public repo:

public / desktop / JavaFX / HelloFX

21

Windows Handling
In JavaFX, each application can own one or more windows. Within each
window, we use abstraction called a scene graph, to represents graphical
content as tree, where higher level elements manage their children.

A scene graph is a hierarchy of components that describes graphical content.

22

• The Stage class represents the main window

• The Scene class contains a scene graph: a non-cyclical tree, with a single

root, representing the contents of the scene.

• Nodes represent graphical elements in the scene graph.

Scene Graphs in JavaFX

23

The “Stage“ is the top-level container or application window. You can have
multiple stages, representing multiple windows.

 javafx.stage.Window

 javafx.stage.Stage

A Stage instance is automatically created by the runtime, and passed into the
start() method.

Stage methods operate at the window level:

• setMinWidth(), setMaxWidth()

• setResizable()

• setTitle()

• setScene()

• show()

Stage

24

The “Scene“ is a container for the content in a scene-graph.

javafx.scene.Scene

You must manually construct the scene, and set it up:

• Create a scene graph and specify the root-node.

• Add the scene to a stage and make the stage visible.

Scene methods manipulate the scene graph, or attempt to set properties for the entire
graph:

• setRoot(Node)

• setFill(Paint)

• getX(), getY()

Scene

A Scene can exist independent of a Stage, but it needs to be attached to a Stage to be visible.

25

“Node“ is the base class for all elements of a Scene graph.

There are two types of nodes:

Branch nodes: These are nodes that can hold other nodes in the tree. Examples of
subclasses include Group, Region.

 javafx.scene.Node

 javafx.scene.Parent

Leaf nodes: These are low-level nodes that cannot contain other nodes. Examples
include Circle, Rectangle, Button and Label.

 javafx.scene.Node

 javafx.scene.Parent

javafx.scene.layout.Region

javafx.scene.control.Control

Nodes

Building a User Interface
class App: Application() {

 override fun start(stage:Stage?) {

 val image = ImageView(Image("java.png", 200.0, 200.0, true, true))

 val label = Label("Java ${System.getProperty("java.version")} & "

 + "JavaFX ${System.getProperty("javafx.version")}")

 label.font = Font.font("Helvetica")

 val box = VBox(image, label)

 VBox.setMargin(label, Insets(10.0))

 val scene = Scene(box, 200.0, 250.0)

 stage?.setResizable(false)

 stage?.setScene(scene)

 stage?.show()

 }

}

26
public / desktop / JavaFX / JavaVersion

27

Layout is how items are arranged on the screen.

Layout classes are branch nodes that have built-in layout behaviour. Your choice
of parent class to hold nodes determines how its children will be laid out.

Layout

Layout Class Layout Behaviour

HBox Layout children horizontally in-order

VBox Layout children vertically in-order

FlowPane Layout left-right, top-bottom in-order

BorderPane Layout across sides, centre in-order

GridPane 2D grid, with cells the same size
Common JavaFX Layout Classes

Layout Example
class Main : Application() {

 override fun start(stage: Stage) {

 val toolbar = ToolBar()

 val button = Button("Button")

 button.font = Font("Helvetica", 11.0)

 toolbar.items.add(button)

 val text = Text("Lorem ipsum dolor …”)

 text.font = Font("Helvetica", 12.0)

 text.wrappingWidth = 350.0

 val scroll = ScrollPane()

 scroll.content = text

 stage.scene = Scene(VBox(toolbar, scroll))

 stage.show()

 }

}

28

public / desktop / JavaFX / Layout

What can we add to a Scene?
Node is the base class for all Leaf nodes in the Scene Graph.

This includes: Camera, Canvas, ImageView, LightBase, MediaView, Parent, Shape,
Shape3D, SubScene, SwingNode

Graphics Primitives (Shape classes for drawing)

• Arc, Circle, CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve,
Rectangle, SVGPath, Text

Widgets (interactive components)

• Accordion, ButtonBar, ChoiceBox, ComboBoxBase, HTMLEditor, Labeled, ListView,
MenuBar, Pagination, ProgressIndicator, ScrollBar, ScrollPane, Separator, Slider,
Spinner, SplitPane, TableView, TabPane, TextInputControl, ToolBar, TreeTableView,
TreeView

•

29

Reusable Components (aka Controls, Widgets)

• JavaFX includes a large collection of
components that you can use to create
your application.

• All behave the same:

• Instantiate them.

• Set properties that describe how they

should behave

• Add them to a layout.

30

https://openjfx.io/javadoc/17/javafx.controls/javafx/scene/control/package-summary.html

31

32

Event Handlers
JavaFX is designed to support event-driven architecture.

To make a user interface interactive, you write event consumers that can
respond to user -generated events. e.g. code to describe what happens when
a button is clicked.

What’s an event? An event is any significant occurrence or change in state
for system hardware or software.

The source of an event can be from internal or external inputs. Events can
generate from a user, like a mouse click or keystroke, an external source, such
as a sensor output, or come from the system, like loading a program.

How does event-driven architecture work? Events are routed from event
producers, to event consumers that can choose to act on them.

Adding listeners (aka event handlers)

A listener is a form of
event handler - a
consumer that registers to
listen for specific events.

We can attach listeners to
any interactive
component, which will be
executed on events that
are produced by that
component.

33

// simple handler to respond to user actions

button.setOnMouseClicked {

 resetToDefaultPath()

}

// respond to panel resize

val widthProperty = pane.widthProperty();

widthProperty.addListener(ChangeListener<Number> ()

{

 @override fun changed() {

 // do something

 }

}

Events Example
class Main : Application() {

 private val width = 250.0

 private val height = 325.0

 override fun start(stage: Stage) {

 // analog time

 val clock = ClockFace(0.0, 0.0, 100.0)

 val clockPane = StackPane(clock.build())

 clockPane.setPrefSize(width, height - 75)

 // digital time

 val time = Label()

 time.font = Font("Helvetica", 28.0)

 val timePane = StackPane(time)

 timePane.setPrefSize(width, 75.0)

 // timer fires every 1/60 seconds, and fetches time

 val dateFormat = SimpleDateFormat("hh:mm:ss")

 val timer = object : AnimationTimer() {

 override fun handle(now: Long) {

 time.text = dateFormat.format(Calendar.getInstance().time)

 clock.setTime(

 Calendar.getInstance()[Calendar.HOUR_OF_DAY],

 Calendar.getInstance()[Calendar.MINUTE],

 Calendar.getInstance()[Calendar.SECOND]

)

 }

 }

 timer.start()

34

public / desktop / JavaFX / Advanced_Clock

Other Samples
class Main : Application() {

class Expr(var num1: Int, var op: OP = OP.NONE, var num2: Int) {

enum class OP { ADD, SUB, MUL, DIV, NONE }

fun clear() = run { num1 = 0 ; op = OP.NONE ; num2 = 0 }

fun set(operation: OP) = run { op = operation }

fun set(n: Int) = if (op == OP.NONE) num1 = (num1 * 10) + n else num2 = (num2 * 10) + n

}

override fun start(stage: Stage?) {

 // text output field

 val output = TextField("")

 output.font = Font("Helvetica", 21.0)

 output.isVisible = true

 output.isDisable = true

 output.alignment = Pos.BASELINE_RIGHT

 // numbers

 val button0 = CalcButton("0", { expr.set(0); output.text = output.text.plus("0") })

 val button1 = CalcButton("1", { expr.set(1); output.text = output.text.plus("1") })

 val button2 = CalcButton("2", { expr.set(2); output.text = output.text.plus("2") })

 val button3 = CalcButton("3", { expr.set(3); output.text = output.text.plus("3") })

 val button4 = CalcButton("4", { expr.set(4); output.text = output.text.plus("4") })

35

public / desktop / JavaFX / Calculator

Inner class

Start method for
main JFX class

